Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
2.
Nature ; 586(7830): 606-611, 2020 10.
Article in English | MEDLINE | ID: mdl-32814902

ABSTRACT

Islets derived from stem cells hold promise as a therapy for insulin-dependent diabetes, but there remain challenges towards achieving this goal1-6. Here we generate human islet-like organoids (HILOs) from induced pluripotent stem cells and show that non-canonical WNT4 signalling drives the metabolic maturation necessary for robust ex vivo glucose-stimulated insulin secretion. These functionally mature HILOs contain endocrine-like cell types that, upon transplantation, rapidly re-establish glucose homeostasis in diabetic NOD/SCID mice. Overexpression of the immune checkpoint protein programmed death-ligand 1 (PD-L1) protected HILO xenografts such that they were able to restore glucose homeostasis in immune-competent diabetic mice for 50 days. Furthermore, ex vivo stimulation with interferon-γ induced endogenous PD-L1 expression and restricted T cell activation and graft rejection. The generation of glucose-responsive islet-like organoids that are able to avoid immune detection provides a promising alternative to cadaveric and device-dependent therapies in the treatment of diabetes.


Subject(s)
Diabetes Mellitus, Experimental/immunology , Diabetes Mellitus, Experimental/pathology , Immune Evasion , Islets of Langerhans/cytology , Islets of Langerhans/immunology , Organoids/cytology , Organoids/immunology , Animals , B7-H1 Antigen/genetics , B7-H1 Antigen/metabolism , Cell Line , Epigenesis, Genetic , Female , Glucose/metabolism , Graft Rejection , Heterografts , Homeostasis , Humans , Immune Tolerance , Insulin Secretion , Islets of Langerhans Transplantation , Lymphocyte Activation , Male , Mice , Mice, Inbred NOD , Mice, SCID , Organoids/transplantation , T-Lymphocytes/cytology , T-Lymphocytes/immunology , Wnt Signaling Pathway/drug effects , Wnt4 Protein/metabolism , Wnt4 Protein/pharmacology
3.
Proc Natl Acad Sci U S A ; 114(5): 1129-1134, 2017 01 31.
Article in English | MEDLINE | ID: mdl-28096419

ABSTRACT

A fibroinflammatory stromal reaction cooperates with oncogenic signaling to influence pancreatic ductal adenocarcinoma (PDAC) initiation, progression, and therapeutic outcome, yet the mechanistic underpinning of this crosstalk remains poorly understood. Here we show that stromal cues elicit an adaptive response in the cancer cell including the rapid mobilization of a transcriptional network implicated in accelerated growth, along with anabolic changes of an altered metabolome. The close overlap of stroma-induced changes in vitro with those previously shown to be regulated by oncogenic Kras in vivo suggests that oncogenic Kras signaling-a hallmark and key driver of PDAC-is contingent on stromal inputs. Mechanistically, stroma-activated cancer cells show widespread increases in histone acetylation at transcriptionally enhanced genes, implicating the PDAC epigenome as a presumptive point of convergence between these pathways and a potential therapeutic target. Notably, inhibition of the bromodomain and extraterminal (BET) family of epigenetic readers, and of Bromodomain-containing protein 2 (BRD2) in particular, blocks stroma-inducible transcriptional regulation in vitro and tumor progression in vivo. Our work suggests the existence of a molecular "AND-gate" such that tumor activation is the consequence of mutant Kras and stromal cues, providing insight into the role of the tumor microenvironment in the origin and treatment of Ras-driven tumors.


Subject(s)
Carcinoma, Pancreatic Ductal/physiopathology , Fibroblasts/physiology , Gene Expression Regulation, Neoplastic/genetics , Histone Code , Metabolome , Pancreatic Neoplasms/physiopathology , Stromal Cells/physiology , Tumor Microenvironment/physiology , Acetylation , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/pathology , Cytokines/metabolism , Energy Metabolism , Enhancer Elements, Genetic , Humans , Intercellular Signaling Peptides and Proteins/metabolism , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/physiology , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Pancreatic Stellate Cells/physiology , Promoter Regions, Genetic , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/physiology , Transcription Factors , Tumor Cells, Cultured
4.
Cell Metab ; 21(4): 628-36, 2015 Apr 07.
Article in English | MEDLINE | ID: mdl-25863252

ABSTRACT

Neurons utilize mitochondrial oxidative phosphorylation (OxPhos) to generate energy essential for survival, function, and behavioral output. Unlike most cells that burn both fat and sugar, neurons only burn sugar. Despite its importance, how neurons meet the increased energy demands of complex behaviors such as learning and memory is poorly understood. Here we show that the estrogen-related receptor gamma (ERRγ) orchestrates the expression of a distinct neural gene network promoting mitochondrial oxidative metabolism that reflects the extraordinary neuronal dependence on glucose. ERRγ(-/-) neurons exhibit decreased metabolic capacity. Impairment of long-term potentiation (LTP) in ERRγ(-/-) hippocampal slices can be fully rescued by the mitochondrial OxPhos substrate pyruvate, functionally linking the ERRγ knockout metabolic phenotype and memory formation. Consistent with this notion, mice lacking neuronal ERRγ in cerebral cortex and hippocampus exhibit defects in spatial learning and memory. These findings implicate neuronal ERRγ in the metabolic adaptations required for memory formation.


Subject(s)
Hippocampus/physiology , Long-Term Potentiation/physiology , Mitochondria/metabolism , Neurons/metabolism , Receptors, Estrogen/metabolism , Analysis of Variance , Animals , Chromatin Immunoprecipitation , Galactosides , Gene Knockout Techniques , Glycolysis/physiology , Hippocampus/metabolism , Indoles , Memory/physiology , Mice , Microarray Analysis , Pyruvic Acid , Real-Time Polymerase Chain Reaction , Spatial Learning/physiology
5.
Cell ; 159(1): 80-93, 2014 Sep 25.
Article in English | MEDLINE | ID: mdl-25259922

ABSTRACT

The poor clinical outcome in pancreatic ductal adenocarcinoma (PDA) is attributed to intrinsic chemoresistance and a growth-permissive tumor microenvironment. Conversion of quiescent to activated pancreatic stellate cells (PSCs) drives the severe stromal reaction that characterizes PDA. Here, we reveal that the vitamin D receptor (VDR) is expressed in stroma from human pancreatic tumors and that treatment with the VDR ligand calcipotriol markedly reduced markers of inflammation and fibrosis in pancreatitis and human tumor stroma. We show that VDR acts as a master transcriptional regulator of PSCs to reprise the quiescent state, resulting in induced stromal remodeling, increased intratumoral gemcitabine, reduced tumor volume, and a 57% increase in survival compared to chemotherapy alone. This work describes a molecular strategy through which transcriptional reprogramming of tumor stroma enables chemotherapeutic response and suggests vitamin D priming as an adjunct in PDA therapy. PAPERFLICK:


Subject(s)
Adenocarcinoma/drug therapy , Antineoplastic Agents/pharmacology , Calcitriol/analogs & derivatives , Carcinoma, Pancreatic Ductal/drug therapy , Pancreatic Neoplasms/drug therapy , Receptors, Calcitriol/metabolism , Adenocarcinoma/pathology , Animals , Calcitriol/pharmacology , Carcinoma, Pancreatic Ductal/pathology , Cell Line, Tumor , Disease Models, Animal , Gene Expression Profiling , Humans , Mice, Inbred C57BL , Molecular Sequence Data , Pancreatic Neoplasms/pathology , Pancreatitis/drug therapy , Pancreatitis/prevention & control , Signal Transduction , Stromal Cells/pathology
6.
Cell Metab ; 15(4): 554-62, 2012 Apr 04.
Article in English | MEDLINE | ID: mdl-22465074

ABSTRACT

Chronic inflammation is a hallmark of atherosclerosis, but its transcriptional underpinnings are poorly understood. We show that the transcriptional repressor Bcl6 is an anti-inflammatory regulator whose loss in bone marrow of Ldlr(-/-) mice results in severe atherosclerosis and xanthomatous tendonitis, a virtually pathognomonic complication in patients with familial hypercholesterolemia. Disruption of the interaction between Bcl6 and SMRT or NCoR with a peptide inhibitor in vitro recapitulated atherogenic gene changes in mice transplanted with Bcl6-deficient bone marrow, pointing to these cofactors as key mediators of Bcl6 inflammatory suppression. Using ChIP-seq, we reveal the SMRT and NCoR corepressor cistromes, each consisting of over 30,000 binding sites with a nearly 50% overlap. While the complete cistromes identify a diversity of signaling pathways, the Bcl6-bound subcistromes for each corepressor are highly enriched for NF-κB-driven inflammatory and tissue remodeling genes. These results reveal that Bcl6-SMRT/NCoR complexes constrain immune responses and contribute to the prevention of atherosclerosis.


Subject(s)
Atherosclerosis/genetics , Atherosclerosis/pathology , DNA-Binding Proteins/metabolism , Inflammation/genetics , Nuclear Receptor Co-Repressor 2/metabolism , Animals , Atherosclerosis/complications , Base Sequence , Bone Marrow/drug effects , Bone Marrow/metabolism , Cholesterol/metabolism , DNA-Binding Proteins/genetics , Gene Expression Regulation/drug effects , Inflammation/complications , Inflammation/pathology , Lipoproteins, LDL/pharmacology , Macrophages/drug effects , Macrophages/metabolism , Macrophages/pathology , Male , Mice , Mice, Inbred C57BL , Molecular Sequence Data , Nuclear Receptor Co-Repressor 2/genetics , Proto-Oncogene Proteins c-bcl-6 , Tendinopathy/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...