Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 23(9)2018 Sep 03.
Article in English | MEDLINE | ID: mdl-30177633

ABSTRACT

In this work we prepared poly(styrene⁻b⁻vinylphenol) (PS-b-PVPh) by sequential anionic living polymerization and poly(ethylene oxide-b-4-vinylpyridine) (PEO-b-P4VP) by reversible addition fragmentation chain transfer polymerization (RAFT) by using poly(ethylene oxide) 4-cyano-4-(phenylcarbonothioylthio)pentanoate (PEO-SC(S)Ph) as a macroinitiator with two hydrogen bonded acceptor groups. When blending with disordered PEO-b-P4VP diblock copolymer, we found the order-order self-assembled structure transition from lamellar structure for pure PS-b-PVPh to cylindrical, worm-like, and finally to PEO crystalline lamellar structures. Taking the advantage of the ΔK effect from competitive hydrogen bonding strengths between PVPh/P4VP and PVPh/PEO domains, it could form the hierarchical self-assembled morphologies such as core⁻shell cylindrical nanostructure.


Subject(s)
Polymers/chemical synthesis , Vinyl Compounds/chemical synthesis , Hydrogen Bonding , Molecular Structure , Polymerization , Polymers/chemistry , Vinyl Compounds/chemistry
2.
Nat Commun ; 3: 940, 2012 Jul 03.
Article in English | MEDLINE | ID: mdl-22760639

ABSTRACT

Controlling supramolecular self-assembly is a fundamental step towards molecular nanofabrication, which involves a formidable reverse engineering problem. It is known that a variety of structures are efficiently obtained by assembling appropriate organic molecules and transition metal atoms on well-defined substrates. Here we show that alkali atoms bring in new functionalities compared with transition metal atoms because of the interplay of local chemical bonding and long-range forces. Using atomic-resolution microscopy and theoretical modelling, we investigate the assembly of alkali (Cs) and transition metals (Mn) co-adsorbed with 7,7,8,8-tetracyanoquinodimethane (TCNQ) molecules, forming chiral superstructures on Ag(100). Whereas Mn-TCNQ(4) domains are achiral, Cs-TCNQ(4) forms chiral islands. The specific behaviour is traced back to the different nature of the Cs- and Mn-TCNQ bonding, opening a novel route for the chiral design of supramolecular architectures. Moreover, alkali atoms provide a means to modify the adlayer electrostatic properties, which is important for the design of metal-organic interfaces.


Subject(s)
Alkalies/chemistry , Nitriles/chemistry , Silver/chemistry , Transition Elements/chemistry , Nanotechnology , Static Electricity
3.
J Am Chem Soc ; 132(34): 11900-1, 2010 Sep 01.
Article in English | MEDLINE | ID: mdl-20698538

ABSTRACT

The magnetic properties of isolated TbPc(2) molecules supported on a Cu(100) surface are investigated by X-ray magnetic circular dichroism at 8 K in magnetic fields up to 5 T. The crystal field and magnetic properties of single molecules are found to be robust upon adsorption on a metal substrate. The Tb magnetic moment has Ising-like magnetization; XMCD spectra combined with multiplet calculations show that the saturation orbital and spin magnetic moment values reach 3 and 6 mu(B), respectively.


Subject(s)
Coordination Complexes/chemistry , Copper/chemistry , Magnetics , Adsorption , Anisotropy , Circular Dichroism , Particle Size , Surface Properties
4.
Nat Chem ; 2(5): 374-9, 2010 May.
Article in English | MEDLINE | ID: mdl-20414237

ABSTRACT

Organic/metal interfaces control the performance of many optoelectronic organic devices, including organic light-emitting diodes or field-effect transistors. Using scanning tunnelling microscopy, low-energy electron diffraction, X-ray photoemission spectroscopy, near-edge X-ray absorption fine structure spectroscopy and density functional theory calculations, we show that electron transfer at the interface between a metal surface and the organic electron acceptor tetracyano-p-quinodimethane leads to substantial structural rearrangements on both the organic and metallic sides of the interface. These structural modifications mediate new intermolecular interactions through the creation of stress fields that could not have been predicted on the basis of gas-phase neutral tetracyano-p-quinodimethane conformation.

SELECTION OF CITATIONS
SEARCH DETAIL
...