Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 538, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38225226

ABSTRACT

Hematopoietic stem cells (HSCs) are capable of regenerating the blood system, but the instructive cues that direct HSCs to regenerate particular lineages lost to the injury remain elusive. Here, we show that iron is increasingly taken up by HSCs during anemia and induces erythroid gene expression and regeneration in a Tet2-dependent manner. Lineage tracing of HSCs reveals that HSCs respond to hemolytic anemia by increasing erythroid output. The number of HSCs in the spleen, but not bone marrow, increases upon anemia and these HSCs exhibit enhanced proliferation, erythroid differentiation, iron uptake, and TET2 protein expression. Increased iron in HSCs promotes DNA demethylation and expression of erythroid genes. Suppressing iron uptake or TET2 expression impairs erythroid genes expression and erythroid differentiation of HSCs; iron supplementation, however, augments these processes. These results establish that the physiological level of iron taken up by HSCs has an instructive role in promoting erythroid-biased differentiation of HSCs.


Subject(s)
Anemia , Dioxygenases , Humans , Spleen , Hematopoietic Stem Cells/metabolism , Cell Differentiation , Iron/metabolism , Anemia/metabolism , Erythroid Cells , DNA-Binding Proteins/metabolism , Dioxygenases/metabolism
2.
Commun Biol ; 5(1): 72, 2022 01 20.
Article in English | MEDLINE | ID: mdl-35058565

ABSTRACT

Early diagnosis of acute myeloid leukemia (AML) in the pre-leukemic stage remains a clinical challenge, as pre-leukemic patients show no symptoms, lacking any known morphological or numerical abnormalities in blood cells. Here, we demonstrate that platelets with structurally abnormal mitochondria emerge at the pre-leukemic phase of AML, preceding detectable changes in blood cell counts or detection of leukemic blasts in blood. We visualized frozen-hydrated platelets from mice at different time points during AML development in situ using electron cryo-tomography (cryo-ET) and identified intracellular organelles through an unbiased semi-automatic process followed by quantitative measurement. A large proportion of platelets exhibited changes in the overall shape and depletion of organelles in AML. Notably, 23% of platelets in pre-leukemic cells exhibit abnormal, round mitochondria with unfolded cristae, accompanied by a significant drop in ATP levels and altered expression of metabolism-related gene signatures. Our study demonstrates that detectable structural changes in pre-leukemic platelets may serve as a biomarker for the early diagnosis of AML.


Subject(s)
Blood Platelets/cytology , Hematopoiesis , Leukemia, Myeloid, Acute/diagnosis , Tomography, X-Ray Computed/methods , Animals , Female , Mice
3.
Stem Cell Reports ; 16(8): 2014-2028, 2021 08 10.
Article in English | MEDLINE | ID: mdl-34242617

ABSTRACT

Histone variants contribute to the complexity of the chromatin landscape and play an integral role in defining DNA domains and regulating gene expression. The histone H3 variant H3.3 is incorporated into genic elements independent of DNA replication by its chaperone HIRA. Here we demonstrate that Hira is required for the self-renewal of adult hematopoietic stem cells (HSCs) and to restrain erythroid differentiation. Deletion of Hira led to rapid depletion of HSCs while differentiated hematopoietic cells remained largely unaffected. Depletion of HSCs after Hira deletion was accompanied by increased expression of bivalent and erythroid genes, which was exacerbated upon cell division and paralleled increased erythroid differentiation. Assessing H3.3 occupancy identified a subset of polycomb-repressed chromatin in HSCs that depends on HIRA to maintain the inaccessible, H3.3-occupied state for gene repression. HIRA-dependent H3.3 incorporation thus defines distinct repressive chromatin that represses erythroid differentiation of HSCs.


Subject(s)
Adult Stem Cells/metabolism , Cell Cycle Proteins/genetics , Cell Differentiation/genetics , Erythroid Cells/metabolism , Hematopoietic Stem Cells/metabolism , Histone Chaperones/genetics , Transcription Factors/genetics , Age Factors , Animals , Animals, Newborn , Cell Cycle Proteins/metabolism , Cell Self Renewal/genetics , Gene Expression Profiling/methods , Gene Ontology , Hematopoiesis/genetics , Histone Chaperones/metabolism , Histones/genetics , Histones/metabolism , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , RNA-Seq/methods , Transcription Factors/metabolism
4.
Stem Cell Reports ; 16(4): 741-753, 2021 04 13.
Article in English | MEDLINE | ID: mdl-33770496

ABSTRACT

Hematopoiesis serves as a paradigm for how homeostasis is maintained within hierarchically organized cell populations. However, important questions remain as to the contribution of hematopoietic stem cells (HSCs) toward maintaining steady state hematopoiesis. A number of in vivo lineage labeling and propagation studies have given rise to contradictory interpretations, leaving key properties of stem cell function unresolved. Using processed flow cytometry data coupled with a biology-driven modeling approach, we show that in vivo flux experiments that come from different laboratories can all be reconciled into a single unifying model, even though they had previously been interpreted as being contradictory. We infer from comparative analysis that different transgenic models display distinct labeling efficiencies across a heterogeneous HSC pool, which we validate by marker gene expression associated with HSC function. Finally, we show how the unified model of HSC differentiation can be used to simulate clonal expansion in the early stages of leukemogenesis.


Subject(s)
Hematopoietic Stem Cells/metabolism , Leukemia/pathology , Models, Biological , Animals , Biomarkers/metabolism , Carcinogenesis/pathology , Cell Self Renewal , Guanine Nucleotide Exchange Factors/metabolism , Integrases/metabolism , Kinetics , Mice, Transgenic , Receptor, TIE-2/metabolism , Staining and Labeling
5.
Cell Rep ; 33(4): 108311, 2020 10 27.
Article in English | MEDLINE | ID: mdl-33113369

ABSTRACT

Animal embryogenesis requires a precise coordination between morphogenesis and cell fate specification. During mesoderm induction, mesodermal fate acquisition is tightly coordinated with the morphogenetic process of epithelial-to-mesenchymal transition (EMT). In zebrafish, cells exist transiently in a partial EMT state during mesoderm induction. Here, we show that cells expressing the transcription factor Sox2 are held in the partial EMT state, stopping them from completing the EMT and joining the mesoderm. This is critical for preventing the formation of ectopic neural tissue. The mechanism involves synergy between Sox2 and the mesoderm-inducing canonical Wnt signaling pathway. When Wnt signaling is inhibited in Sox2-expressing cells trapped in the partial EMT, cells exit into the mesodermal territory but form an ectopic spinal cord instead of mesoderm. Our work identifies a critical developmental checkpoint that ensures that morphogenetic movements establishing the mesodermal germ layer are accompanied by robust mesodermal cell fate acquisition.


Subject(s)
Mesoderm/metabolism , SOXB1 Transcription Factors/metabolism , Wnt Signaling Pathway , Animals , Humans , Morphogenesis
6.
Environ Sci Process Impacts ; 22(1): 187-196, 2020 Jan 01.
Article in English | MEDLINE | ID: mdl-31833499

ABSTRACT

Urban stormwater has recently been considered a potential water resource to augment urban water supplies; however, the existence of emerging contaminants limits urban stormwater utilization. This study aims to use woodchip bioreactors, which are natural and inexpensive, to remove emerging contaminants from artificial stormwater, with a focus on the contaminant removal processes in the woodchip bioreactor and on the effects of operational parameters on the system performance. Seven commonly detected emerging contaminants - acetaminophen (ACE), caffeine (CAFF), carbamazepine (CBZ), ibuprofen (IBU), sulfathiazole (SFZ), benzotriazole (BT) and 5-methyl-1H-benzotriazole (5-MeBT) - were studied. The results showed that the removal efficiency and removal processes are heavily dependent on the compound. ACE and CAFF have the highest removal efficiencies (≥80%), and sorption and biodegradation are both crucial for their removal. However, IBU exhibits very limited sorption and biodegradation and hence has the worst removal (≤15%). The removal efficiencies of the other compounds (SFZ, CBZ, BT and 5-MeBT) range from ∼30 to 60%, and sorption is likely the main removal process. The effects of several operational parameters, including woodchip type, operation time, season and flow rate, on the removal rate of emerging contaminants were also explored. The results of this study showed that the woodchip column system, which is capable of sorption and biodegradation, represents a promising treatment process for removing emerging contaminants from urban stormwater.


Subject(s)
Bioreactors , Water Pollutants, Chemical , Biodegradation, Environmental , Carbamazepine
7.
Blood Adv ; 2(11): 1220-1228, 2018 06 12.
Article in English | MEDLINE | ID: mdl-29848758

ABSTRACT

Characterization of hematopoietic stem cells (HSCs) has advanced largely owing to transplantation assays, in which the developmental potential of HSCs is assessed generally in nonhomeostatic conditions. These studies established that adult HSCs extensively contribute to multilineage hematopoietic regeneration upon transplantation. On the contrary, recent studies performing lineage tracing of HSCs under homeostatic conditions have shown that adult HSCs may contribute far less to steady-state hematopoiesis than would be anticipated based on transplantation assays. Here, we used 2 independent HSC-lineage-tracing models to examine the contribution of adult HSCs to steady-state hematopoiesis. We show that adult HSCs contribute robustly to steady-state hematopoiesis, exhibiting faster efflux toward the myeloid lineages compared with lymphoid lineages. Platelets were robustly labeled by HSCs, reaching the same level of labeling as HSCs by 1 year of chase. Our results support the view that adult HSCs contribute to the continuous influx of blood cells during steady-state hematopoiesis.


Subject(s)
Adult Stem Cells/metabolism , Hematopoiesis , Hematopoietic Stem Cells/metabolism , Adult Stem Cells/cytology , Animals , Hematopoietic Stem Cells/cytology , Mice , Mice, Transgenic
8.
Elife ; 72018 02 16.
Article in English | MEDLINE | ID: mdl-29451493

ABSTRACT

Activation of the unfolded protein response (UPR) sustains protein homeostasis (proteostasis) and plays a fundamental role in tissue maintenance and longevity of organisms. Long-range control of UPR activation has been demonstrated in invertebrates, but such mechanisms in mammals remain elusive. Here, we show that the female sex hormone estrogen regulates the UPR in hematopoietic stem cells (HSCs). Estrogen treatment increases the capacity of HSCs to regenerate the hematopoietic system upon transplantation and accelerates regeneration after irradiation. We found that estrogen signals through estrogen receptor α (ERα) expressed in hematopoietic cells to activate the protective Ire1α-Xbp1 branch of the UPR. Further, ERα-mediated activation of the Ire1α-Xbp1 pathway confers HSCs with resistance against proteotoxic stress and promotes regeneration. Our findings reveal a systemic mechanism through which HSC function is augmented for hematopoietic regeneration.


Subject(s)
Endoribonucleases/metabolism , Estrogen Receptor alpha/metabolism , Estrogens/metabolism , Hematopoietic Stem Cells/physiology , Protein Serine-Threonine Kinases/metabolism , Unfolded Protein Response , Animals , Cells, Cultured , Hematopoietic Stem Cells/drug effects , Mice , Signal Transduction
9.
Genome Biol Evol ; 5(6): 1065-78, 2013.
Article in English | MEDLINE | ID: mdl-23650209

ABSTRACT

Gene regulation change has long been recognized as an important mechanism for phenotypic evolution. We used the evolution of yeast aerobic fermentation as a model to explore how gene regulation has evolved and how this process has contributed to phenotypic evolution and adaptation. Most eukaryotes fully oxidize glucose to CO2 and H2O in mitochondria to maximize energy yield, whereas some yeasts, such as Saccharomyces cerevisiae and its relatives, predominantly ferment glucose into ethanol even in the presence of oxygen, a phenomenon known as aerobic fermentation. We examined the genome-wide gene expression levels among 12 different yeasts and found that a group of genes involved in the mitochondrial respiration process showed the largest reduction in gene expression level during the evolution of aerobic fermentation. Our analysis revealed that the downregulation of these genes was significantly associated with massive loss of binding motifs of Cbf1p in the fermentative yeasts. Our experimental assays confirmed the binding of Cbf1p to the predicted motif and the activator role of Cbf1p. In summary, our study laid a foundation to unravel the long-time mystery about the genetic basis of evolution of aerobic fermentation, providing new insights into understanding the role of cis-regulatory changes in phenotypic evolution.


Subject(s)
Fermentation , Gene Expression Regulation, Fungal , Yeasts/genetics , Yeasts/metabolism , Aerobiosis , Base Sequence , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Binding Sites , Biological Evolution , Evolution, Molecular , Genes, Fungal , Mitochondria/genetics , Mitochondria/metabolism , Promoter Regions, Genetic , Protein Binding , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
10.
J Hazard Mater ; 262: 951-9, 2013 Nov 15.
Article in English | MEDLINE | ID: mdl-23498168

ABSTRACT

Arsenic (As) contamination in terrestrial geothermal systems has been identified in many countries worldwide. Concentrations higher than 0.01 mg/L are detrimental to human health. We examined potential consequences for As contamination of freshwater resources based on hydrogeochemical investigations of geothermal waters in deep wells and hot springs collected from western Anatolia, Turkey. We analyzed samples for major ions and trace element concentrations. Temperature of geothermal waters in deep wells showed extreme ranges (40 and 230 °C), while, temperature of hot spring fluids was up to 90 °C. The Piper plot illustrated two dominant water types: Na-HCO3(-) type for geothermal waters in deep wells and Ca-HCO3(-) type for hot spring fluids. Arsenic concentration ranged from 0.03 to 1.5mg/L. Dominance of reduced As species, i.e., As(III), was observed in our samples. The Eh value ranged between -250 and 119 mV, which suggests diverse geochemical conditions. Some of the measured trace elements were found above the World Health Organization guidelines and Turkish national safe drinking water limits. The variation in pH (range: 6.4-9.3) and As in geothermal waters suggest mixing with groundwater. Mixing of geothermal waters is primarily responsible for contamination of freshwater resources and making them unsuitable for drinking or irrigation.


Subject(s)
Arsenic/analysis , Environmental Monitoring/methods , Fresh Water , Water Pollutants, Chemical/analysis , Arsenic/chemistry , Carbon/chemistry , Geography , Groundwater , Hot Springs , Hydrogen-Ion Concentration , Temperature , Trace Elements/chemistry , Turkey , Water Purification/methods , Water Supply
11.
Water Res ; 44(3): 949-55, 2010 Feb.
Article in English | MEDLINE | ID: mdl-19917511

ABSTRACT

Both Shigella spp. and enteroinvasive Escherichia coli (EIEC) are important human pathogens that are responsible for the majority of cases of endemic bacillary dysentery. However, they are difficult to identify and differentiate by biochemical tests or molecular methods alone. In this study, we developed a procedure to detect Shigella spp. and EIEC from environmental water samples using membrane filtration followed by nutrient broth enrichment, isolation using selective culture plates, and identification of the invasion plasmid antigen H (ipaH) gene by PCR amplification and DNA sequencing. Finally, we used a biochemical test and a serological assay to differentiate between Shigella and EIEC. Among the 93 water samples from nine reservoirs and one watershed, 76 (81.7%) water samples of culture plates had candidate colonies of Shigella and EIEC and 5 water samples were positive (5.4%) for a Shigella- and EIEC-specific polymerase chain reaction targeting the ipaH gene. Guided by the molecular method, the biochemical test, and the serological assay, 11 ipaH gene-positive isolates from 5 water samples were all identified as EIEC.


Subject(s)
Bacterial Typing Techniques/methods , Escherichia coli/genetics , Escherichia coli/isolation & purification , Molecular Diagnostic Techniques/methods , Rivers/microbiology , Shigella/genetics , Shigella/isolation & purification , Antigens, Bacterial/genetics , Bacterial Proteins/genetics , Environmental Microbiology , Escherichia coli Proteins/genetics , Geography , Phylogeny , Sequence Analysis, DNA , Serologic Tests , Taiwan , Water Supply
SELECTION OF CITATIONS
SEARCH DETAIL
...