Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Publication year range
1.
Chem Sci ; 15(4): 1472-1479, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38274055

ABSTRACT

Polymers that release functional small molecules in response to mechanical force are promising materials for a variety of applications including drug delivery, catalysis, and sensing. While many different mechanophores have been developed that enable the triggered release of a variety of small molecule payloads, most mechanophores are limited to one specific payload molecule. Here, we leverage the unique fragmentation of a 5-aryloxy-substituted 2-furylcarbinol derivative to design a novel mechanophore capable of the mechanically triggered release of two distinct cargo molecules. Critical to the mechanophore design is the incorporation of a self-immolative spacer to facilitate the release of a second payload. By varying the relative positions of each cargo molecule conjugated to the mechanophore, dual payload release occurs either concurrently or sequentially, demonstrating the ability to fine-tune the release profiles.

2.
J Biomed Sci ; 30(1): 27, 2023 Apr 26.
Article in English | MEDLINE | ID: mdl-37101169

ABSTRACT

BACKGROUND: Amyotrophic lateral sclerosis (ALS) associated with TAR DNA-binding protein 43 (TDP-43) aggregation has been considered as a lethal and progressive motor neuron disease. Recent studies have shown that both C-terminal TDP-43 (C-TDP-43) aggregates and oligomers were neurotoxic and pathologic agents in ALS and frontotemporal lobar degeneration (FTLD). However, misfolding protein has long been considered as an undruggable target by applying conventional inhibitors, agonists, or antagonists. To provide this unmet medical need, we aim to degrade these misfolding proteins by designing a series of proteolysis targeting chimeras (PROTACs) against C-TDP-43. METHODS: By applying filter trap assay, western blotting, and microscopy imaging, the degradation efficiency of C-TDP-43 aggregates was studied in Neuro-2a cells overexpressing eGFP-C-TDP-43 or mCherry-C-TDP-43. The cell viability was characterized by alarmarBlue assay. The beneficial and disaggregating effects of TDP-43 PROTAC were examined with the YFP-C-TDP-43 transgenic C. elegans by motility assay and confocal microscopy. The impact of TDP-43 PROTAC on C-TDP-43 oligomeric intermediates was monitored by fluorescence lifetime imaging microscopy and size exclusion chromatography in the Neuro-2a cells co-expressing eGFP-C-TDP-43 and mCherry-C-TDP-43. RESULTS: Four PROTACs with different linker lengths were synthesized and characterized. Among these chimeras, PROTAC 2 decreased C-TDP-43 aggregates and relieved C-TDP-43-induced cytotoxicity in Neuro-2a cells without affecting endogenous TDP-43. We showed that PROTAC 2 bound to C-TDP-43 aggregates and E3 ligase to initiate ubiquitination and proteolytic degradation. By applying advanced microscopy, it was further shown that PROTAC 2 decreased the compactness and population of C-TDP-43 oligomers. In addition to cellular model, PROTAC 2 also improved the motility of transgenic C. elegans by reducing the C-TDP-43 aggregates in the nervous system. CONCLUSIONS: Our study demonstrated the dual-targeting capacity of the newly-designed PROTAC 2 against both C-TDP-43 aggregates and oligomers to reduce their neurotoxicity, which shed light on the potential drug development for ALS as well as other neurodegenerative diseases.


Subject(s)
Amyotrophic Lateral Sclerosis , Neurodegenerative Diseases , Animals , Amyotrophic Lateral Sclerosis/metabolism , Neurodegenerative Diseases/genetics , Proteolysis , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , DNA-Binding Proteins/metabolism , Animals, Genetically Modified
3.
Int J Mol Sci ; 21(16)2020 Aug 05.
Article in English | MEDLINE | ID: mdl-32764382

ABSTRACT

Non-small cell lung cancer (NSCLC) accounts about 80% of all lung cancers. More than two-thirds of NSCLC patients have inoperable, locally advanced or metastatic tumors. Non-toxic agents that synergistically potentiate cancer-killing activities of chemotherapeutic drugs are in high demand. YL-9 was a novel and non-cytotoxic compound with the structure related to sildenafil but showing much less activity against phosphodiesterase type 5 (PDE5). NCI-H460, an NSCLC cell line with low PDE5 expression, was used as the cell model. YL-9 synergistically potentiated vinorelbine-induced anti-proliferative and apoptotic effects in NCI-H460 cells. Vinorelbine induced tubulin acetylation and Bub1-related kinase (BUBR1) phosphorylation, a necessary component in spindle assembly checkpoint. These effects, as well as BUBR1 cleavage, were substantially enhanced in co-treatment with YL-9. Several mitotic arrest signals were enhanced under combinatory treatment of vinorelbine and YL-9, including an increase of mitotic spindle abnormalities, increased cyclin B1 expression, B-cell lymphoma 2 (Bcl-2) phosphorylation and increased phosphoproteins. Moreover, YL-9 also displayed synergistic activity in combining with vinorelbine to induce apoptosis in A549 cells which express PDE5. In conclusion. the data suggest that YL-9 is a novel agent that synergistically amplifies vinorelbine-induced NSCLC apoptosis through activation of spindle assembly checkpoint and increased mitotic arrest of the cell cycle. YL-9 shows the potential for further development in combinatory treatment against NSCLC.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Carcinoma, Non-Small-Cell Lung/drug therapy , Cyclic Nucleotide Phosphodiesterases, Type 5/genetics , Protein Serine-Threonine Kinases/genetics , A549 Cells , Apoptosis/drug effects , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Drug Synergism , Gene Expression Regulation, Neoplastic/drug effects , Humans , M Phase Cell Cycle Checkpoints/drug effects , Microtubules/drug effects , Microtubules/genetics , Phosphodiesterase 5 Inhibitors/pharmacology , Spindle Apparatus/drug effects , Vinorelbine/pharmacology
4.
J Biomed Sci ; 26(1): 55, 2019 Jul 31.
Article in English | MEDLINE | ID: mdl-31366399

ABSTRACT

BACKGROUND: Mutations in the PB1 subunit of RNA-dependent RNA polymerase (RdRp) of influenza A virus can affect replication fidelity. Before the influenza A/H1N1 pandemic in 2009, most human influenza A/H1N1 viruses contained the avian-associated residue, serine, at position 216 in PB1. However, near the onset of the 2009 pandemic, human viruses began to acquire the mammalian-associated residue, glycine, at PB1-216, and PB1-216G became predominant in human viruses thereafter. METHODS: Using entropy-based analysis algorithm, we have previously identified several host-specific amino-acid signatures that separated avian and swine viruses from human influenza viruses. The presence of these host-specific signatures in human influenza A/H1N1 viruses suggested that these mutations were the result of adaptive genetic evolution that enabled these influenza viruses to circumvent host barriers, which resulted in cross-species transmission. We investigated the biological impact of this natural avian-to-mammalian signature substitution at PB1-216 in human influenza A/H1N1 viruses. RESULTS: We found that PB1-216G viruses had greater mutation potential, and were more sensitive to ribavirin than PB1-216S viruses. In oseltamivir-treated HEK293 cells, PB1-216G viruses generated mutations in viral neuraminidase at a higher rate than PB1-216S viruses. By contrast, PB1-216S viruses were more virulent in mice than PB1-216G viruses. These results suggest that the PB1-S216G substitution enhances viral epidemiological fitness by increasing the frequency of adaptive mutations in human influenza A/H1N1 viruses. CONCLUSIONS: Our results thus suggest that the increased adaptability and epidemiological fitness of naturally arising human PB1-216G viruses, which have a canonical low-fidelity replicase, were the biological mechanisms underlying the replacement of PB1-216S viruses with a high-fidelity replicase following the emergence of pdmH1N1. We think that continued surveillance of such naturally occurring PB1-216 variants among others is warranted to assess the potential impact of changes in RdRp fidelity on the adaptability and epidemiological fitness of human A/H1N1 influenza viruses.


Subject(s)
Influenza A virus/physiology , Viral Proteins/genetics , Virus Replication/genetics , Adaptation, Physiological/genetics , Animals , Dogs , HEK293 Cells , Humans , Influenza A virus/genetics , Madin Darby Canine Kidney Cells , Mutation/genetics , Viral Proteins/metabolism , Virulence/genetics
5.
Article in English | MEDLINE | ID: mdl-30047877

ABSTRACT

In asymmetric resolution stereoscopic video coding (ARSVC), a stereoscopic video consists of one full-sized leftview video sequence and the synchronized quarter-sized rightview video sequence for achieving a bitrate reduction effect by the encoder. Prior to displaying 3D scenes on the screen, it is necessary to upsample the decoded downsampled right-view video sequence at the client side. In this paper, we propose an effective adaptive upsampling method for ARSVC. First, we employ the resolution- and texture-consistency (RTC) consideration in the conventional Wiener filter-based interpolation scheme, called RTCWF, to enhance the upsampling accuracy in the spatial domain. Second, we propose a linear regression-based interview prediction (LRIP) scheme with residual compensation (RC), called LRIPRC, to increase the upsampling accuracy in the interview domain. Third, we propose an adaptive fusion-based approach to integrate RTCWF and LRIPRC, called RTCWFLRIPRC, to maximize the quality improvement of the upsampled image. Based on seven typical test stereoscopic video sequences, in 3D-HEVC, the experimental results demonstrated that in terms of six well-known quality metrics and execution time requirements, our RTCWF-LRIPRC method outperforms the state-of-the-art upsampling methods for ARSVC.

6.
Hu Li Za Zhi ; 53(3): 73-8, 2006 Jun.
Article in Chinese | MEDLINE | ID: mdl-16767626

ABSTRACT

Despite the general reduction in sexual needs with aging, human beings have sexual needs which are life long. This study looks at the overall lack of privacy, as well as at the biological, psychological and social changes that occur among the institutionalized elderly with dementia, and addresses the appropriateness of sexual expression. Conflicts involving social values, a lack of policies regarding sexual issues, and a lack of in-service training in institutions result in caregivers experiencing difficulty with the sexual issues faced by patients. It is essential to develop strategies which are consistent with culture and institutional philosophy. Through the understanding of sexual expression and its influencing factors among residents with dementia, caregivers can develop a care plan that allows residents to express appropriate sexual behavior.


Subject(s)
Alzheimer Disease/psychology , Sexual Behavior , Aged , Alzheimer Disease/nursing , Female , Homes for the Aged , Humans , Male , Nursing Homes
SELECTION OF CITATIONS
SEARCH DETAIL
...