Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biochem Biophys Res Commun ; 315(1): 30-7, 2004 Feb 27.
Article in English | MEDLINE | ID: mdl-15013421

ABSTRACT

Microarray technology is a powerful tool to speed up genomics study, yet many technical aspects need to be improved. The hybridization reaction of microarray experiments is carried out for 16h or overnight in order to obtain reasonably strong signals for analysis in the presence of high salt buffer, like SSC. However, the quantitative aspect of microarray hybridization has seldom been investigated. In this study, we showed that higher overall signals from hybridization were achieved in a buffer system containing dextran sulfate, which can accelerate the kinetics of reaction by increasing the local concentration of the reactants. The dextran sulfate containing hybridization solution increases the reaction 4-fold (median) for cDNA microarray and 29-fold for oligonucleotide microarray. More importantly, the solution also provides a quantitative hybridization reaction, where the hybridization signals are proportional to the abundance of transcript added. The enhancement in the kinetics of hybridization is due to both dextran sulfate and formamide present in the solution, but the effect is not due to the higher temperature used during the reaction. With a slightly longer reaction time the hybridization reaction with the solution allows the detection of hybridization signals from rare transcripts that is not possible with regular hybridization buffers. With appropriate washing, the enhancement of kinetics by the solution does not increase the background signals at all, allowing higher signal-to-noise ratios to be achieved.


Subject(s)
Dextran Sulfate/chemistry , Nucleic Acid Hybridization/methods , Arabidopsis/genetics , Buffers , Carbocyanines/chemistry , Cell Line , DNA, Complementary/chemistry , DNA, Complementary/genetics , Formamides/chemistry , Humans , Kinetics , Oligonucleotide Array Sequence Analysis/methods , RNA, Messenger/analysis , Sensitivity and Specificity
2.
Biochem J ; 374(Pt 3): 625-32, 2003 Sep 15.
Article in English | MEDLINE | ID: mdl-12809552

ABSTRACT

Most microarray slides are manufactured or coated with a layer of poly(L-lysine) or with silanes with different chemical functional groups, for the attachment of nucleic acids on to their surfaces. The efficiency with which nucleic acids bind to these surfaces is not high, because they can be washed away, especially in the case of spotting oligonucleotides. In view of this, we have developed a method to increase the binding capacity and efficiency of hybridization of DNA on to derivatized glass surfaces. This makes use of the synergistic effect of two binding interactions between the nucleic acids and the coating chemicals on the surface of the glass slides. The enhanced binding allows the nucleic acids to be bound tightly and to survive stringency washes. When immobilized, DNA exhibits a higher propensity for hybridization on the surface than on slides with only one binding chemical. By varying the silane concentrations, we have shown that maximal DNA oligonucleotide binding on glass surfaces occurs when the percentage composition of both of the surface-coating chemicals falls to 0.2%, which is different from that on binding PCR products. This new mixture-combination approach for nucleic-acid binding allows signals from immobilization and hybridization to have higher signal-to-noise ratios than for other silane-coated methods.


Subject(s)
Amines/chemistry , DNA/chemistry , Epoxy Compounds/chemistry , Nucleic Acid Hybridization/methods , Nucleic Acids/chemistry , Oligonucleotide Array Sequence Analysis/methods , Silanes/chemistry , Binding Sites , Glass
SELECTION OF CITATIONS
SEARCH DETAIL
...