Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 91
Filter
1.
medRxiv ; 2024 May 16.
Article in English | MEDLINE | ID: mdl-38798557

ABSTRACT

Genetic variation within intron 3 of the CACNA1C calcium channel gene is associated with schizophrenia and bipolar disorder, but analysis of the causal variants and their effect is complicated by a nearby variable-number tandem repeat (VNTR). Here, we used 155 long-read genome assemblies from 78 diverse individuals to delineate the structure and population variability of the CACNA1C intron 3 VNTR. We categorized VNTR sequences into 7 Types of structural alleles using sequence differences among repeat units. Only 12 repeat units at the 5' end of the VNTR were shared across most Types, but several Types were related through a series of large and small duplications. The most diverged Types were rare and present only in individuals with African ancestry, but the multiallelic structural polymorphism Variable Region 2 was present across populations at different frequencies, consistent with expansion of the VNTR preceding the emergence of early hominins. VR2 was in complete linkage disequilibrium with fine-mapped schizophrenia variants (SNPs) from genome-wide association studies (GWAS). This risk haplotype was associated with decreased CACNA1C gene expression in brain tissues profiled by the GTEx project. Our work suggests that sequence variation within a human-specific VNTR affects gene expression, and provides a detailed characterization of new alleles at a flagship neuropsychiatric locus.

2.
Proc Natl Acad Sci U S A ; 121(17): e2306382121, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38640347

ABSTRACT

Hippocampal somatostatin-expressing (Sst) GABAergic interneurons (INs) exhibit considerable anatomical and functional heterogeneity. Recent single-cell transcriptome analyses have provided a comprehensive Sst-IN subpopulations census, a plausible molecular ground truth of neuronal identity whose links to specific functionality remain incomplete. Here, we designed an approach to identify and access subpopulations of Sst-INs based on transcriptomic features. Four mouse models based on single or combinatorial Cre- and Flp- expression differentiated functionally distinct subpopulations of CA1 hippocampal Sst-INs that largely tiled the morpho-functional parameter space of the Sst-INs superfamily. Notably, the Sst;;Tac1 intersection revealed a population of bistratified INs that preferentially synapsed onto fast-spiking interneurons (FS-INs) and were sufficient to interrupt their firing. In contrast, the Ndnf;;Nkx2-1 intersection identified a population of oriens lacunosum-moleculare INs that predominantly targeted CA1 pyramidal neurons, avoiding FS-INs. Overall, our results provide a framework to translate neuronal transcriptomic identity into discrete functional subtypes that capture the diverse specializations of hippocampal Sst-INs.


Subject(s)
Hippocampus , Interneurons , Mice , Animals , Interneurons/physiology , Hippocampus/metabolism , Neurons/metabolism , Pyramidal Cells/metabolism , Somatostatin/genetics , Somatostatin/metabolism
3.
Cell Rep ; 43(4): 113839, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38507409

ABSTRACT

Homeostatic regulation of synapses is vital for nervous system function and key to understanding a range of neurological conditions. Synaptic homeostasis is proposed to operate over hours to counteract the destabilizing influence of long-term potentiation (LTP) and long-term depression (LTD). The prevailing view holds that synaptic scaling is a slow first-order process that regulates postsynaptic glutamate receptors and fundamentally differs from LTP or LTD. Surprisingly, we find that the dynamics of scaling induced by neuronal inactivity are not exponential or monotonic, and the mechanism requires calcineurin and CaMKII, molecules dominant in LTD and LTP. Our quantitative model of these enzymes reconstructs the unexpected dynamics of homeostatic scaling and reveals how synapses can efficiently safeguard future capacity for synaptic plasticity. This mechanism of synaptic adaptation supports a broader set of homeostatic changes, including action potential autoregulation, and invites further inquiry into how such a mechanism varies in health and disease.


Subject(s)
Calcineurin , Calcium-Calmodulin-Dependent Protein Kinase Type 2 , Homeostasis , Synapses , Animals , Synapses/metabolism , Synapses/physiology , Calcineurin/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Long-Term Potentiation/physiology , Neuronal Plasticity/physiology , Long-Term Synaptic Depression/physiology , Neurons/metabolism , Neurons/physiology , Mice
4.
Neuron ; 112(11): 1862-1875.e5, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38537642

ABSTRACT

A postulated role of subcortical neuromodulators is to control brain states. Mechanisms by which different neuromodulators compete or cooperate at various temporal scales remain an open question. We investigated the interaction of acetylcholine (ACh) and oxytocin (OXT) at slow and fast timescales during various brain states. Although these neuromodulators fluctuated in parallel during NREM packets, transitions from NREM to REM were characterized by a surge of ACh but a continued decrease of OXT. OXT signaling lagged behind ACh. High ACh was correlated with population synchrony and gamma oscillations during active waking, whereas minimum ACh predicts sharp-wave ripples (SPW-Rs). Optogenetic control of ACh and OXT neurons confirmed the active role of these neuromodulators in the observed correlations. Synchronous hippocampal activity consistently reduced OXT activity, whereas inactivation of the lateral septum-hypothalamus path attenuated this effect. Our findings demonstrate how cooperative actions of these neuromodulators allow target circuits to perform specific functions.


Subject(s)
Acetylcholine , Hippocampus , Oxytocin , Oxytocin/metabolism , Acetylcholine/metabolism , Hippocampus/physiology , Hippocampus/metabolism , Animals , Male , Optogenetics , Neurons/physiology , Neurons/metabolism , Neurons/drug effects , Gamma Rhythm/physiology , Gamma Rhythm/drug effects , Neurotransmitter Agents/metabolism , Neurotransmitter Agents/pharmacology , Mice , Rats , Wakefulness/physiology
5.
Nature ; 626(7998): 347-356, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38267576

ABSTRACT

To survive in a complex social group, one needs to know who to approach and, more importantly, who to avoid. In mice, a single defeat causes the losing mouse to stay away from the winner for weeks1. Here through a series of functional manipulation and recording experiments, we identify oxytocin neurons in the retrochiasmatic supraoptic nucleus (SOROXT) and oxytocin-receptor-expressing cells in the anterior subdivision of the ventromedial hypothalamus, ventrolateral part (aVMHvlOXTR) as a key circuit motif for defeat-induced social avoidance. Before defeat, aVMHvlOXTR cells minimally respond to aggressor cues. During defeat, aVMHvlOXTR cells are highly activated and, with the help of an exclusive oxytocin supply from the SOR, potentiate their responses to aggressor cues. After defeat, strong aggressor-induced aVMHvlOXTR cell activation drives the animal to avoid the aggressor and minimizes future defeat. Our study uncovers a neural process that supports rapid social learning caused by defeat and highlights the importance of the brain oxytocin system in social plasticity.


Subject(s)
Aggression , Avoidance Learning , Hypothalamus , Neural Pathways , Neurons , Oxytocin , Social Learning , Animals , Mice , Aggression/physiology , Avoidance Learning/physiology , Cues , Fear/physiology , Hypothalamus/cytology , Hypothalamus/metabolism , Neural Pathways/physiology , Neurons/metabolism , Oxytocin/metabolism , Receptors, Oxytocin/metabolism , Social Behavior , Social Learning/physiology , Supraoptic Nucleus/cytology , Supraoptic Nucleus/metabolism , Ventromedial Hypothalamic Nucleus/cytology , Ventromedial Hypothalamic Nucleus/metabolism , Neuronal Plasticity
6.
Nat Rev Neurosci ; 24(11): 672-692, 2023 11.
Article in English | MEDLINE | ID: mdl-37773070

ABSTRACT

Excitation-transcription coupling (E-TC) links synaptic and cellular activity to nuclear gene transcription. It is generally accepted that E-TC makes a crucial contribution to learning and memory through its role in underpinning long-lasting synaptic enhancement in late-phase long-term potentiation and has more recently been linked to late-phase long-term depression: both processes require de novo gene transcription, mRNA translation and protein synthesis. E-TC begins with the activation of glutamate-gated N-methyl-D-aspartate-type receptors and voltage-gated L-type Ca2+ channels at the membrane and culminates in the activation of transcription factors in the nucleus. These receptors and ion channels mediate E-TC through mechanisms that include long-range signalling from the synapse to the nucleus and local interactions within dendritic spines, among other possibilities. Growing experimental evidence links these E-TC mechanisms to late-phase long-term potentiation and learning and memory. These advances in our understanding of the molecular mechanisms of E-TC mean that future efforts can focus on understanding its mesoscale functions and how it regulates neuronal network activity and behaviour in physiological and pathological conditions.


Subject(s)
Neuronal Plasticity , Receptors, N-Methyl-D-Aspartate , Humans , Receptors, N-Methyl-D-Aspartate/metabolism , Neuronal Plasticity/physiology , Long-Term Potentiation/physiology , Neurons/metabolism , Synapses/metabolism , Gene Expression , Hippocampus/physiology
7.
bioRxiv ; 2023 Apr 27.
Article in English | MEDLINE | ID: mdl-37162922

ABSTRACT

Hippocampal somatostatin-expressing (Sst) GABAergic interneurons (INs) exhibit considerable anatomical and functional heterogeneity. Recent single cell transcriptome analyses have provided a comprehensive Sst-IN subtype census, a plausible molecular ground truth of neuronal identity whose links to specific functionality remain incomplete. Here, we designed an approach to identify and access subpopulations of Sst-INs based on transcriptomic features. Four mouse models based on single or combinatorial Cre- and Flp- expression differentiated functionally distinct subpopulations of CA1 hippocampal Sst-INs that largely tiled the morpho-functional parameter space of the Sst-INs superfamily. Notably, the Sst;;Tac1 intersection revealed a population of bistratified INs that preferentially synapsed onto fast-spiking interneurons (FS-INs) and were both necessary and sufficient to interrupt their firing. In contrast, the Ndnf;;Nkx2-1 intersection identified a population of oriens lacunosum-moleculare (OLM) INs that predominantly targeted CA1 pyramidal neurons, avoiding FS-INs. Overall, our results provide a framework to translate neuronal transcriptomic identity into discrete functional subtypes that capture the diverse specializations of hippocampal Sst-INs.

8.
Res Sq ; 2023 Mar 27.
Article in English | MEDLINE | ID: mdl-37034806

ABSTRACT

Oxytocin is a neuropeptide critical for maternal physiology and social behavior, and is thought to be dysregulated in several neuropsychiatric disorders. Despite the biological and neurocognitive importance of oxytocin signaling, methods are lacking to activate oxytocin receptors with high spatiotemporal precision in the brain and peripheral mammalian tissues. Here we developed and validated caged analogs of oxytocin which are functionally inert until cage release is triggered by ultraviolet light. We examined how focal versus global oxytocin application affected oxytocin-driven Ca2+ wave propagation in mouse mammary tissue. We also validated the application of caged oxytocin in the hippocampus and auditory cortex with electrophysiological recordings in vitro, and demonstrated that oxytocin uncaging can accelerate the onset of mouse maternal behavior in vivo. Together, these results demonstrate that optopharmacological control of caged peptides is a robust tool with spatiotemporal precision for modulating neuropeptide signaling throughout the brain and body.

9.
Neuron ; 111(8): 1282-1300.e8, 2023 04 19.
Article in English | MEDLINE | ID: mdl-36787750

ABSTRACT

Cannabidiol (CBD), a non-euphoric component of cannabis, reduces seizures in multiple forms of pediatric epilepsies, but the mechanism(s) of anti-seizure action remain unclear. In one leading model, CBD acts at glutamatergic axon terminals, blocking the pro-excitatory actions of an endogenous membrane phospholipid, lysophosphatidylinositol (LPI), at the G-protein-coupled receptor GPR55. However, the impact of LPI-GPR55 signaling at inhibitory synapses and in epileptogenesis remains underexplored. We found that LPI transiently increased hippocampal CA3-CA1 excitatory presynaptic release probability and evoked synaptic strength in WT mice, while attenuating inhibitory postsynaptic strength by decreasing GABAARγ2 and gephyrin puncta. LPI effects at excitatory and inhibitory synapses were eliminated by CBD pre-treatment and absent after GPR55 deletion. Acute pentylenetrazole-induced seizures elevated GPR55 and LPI levels, and chronic lithium-pilocarpine-induced epileptogenesis potentiated LPI's pro-excitatory effects. We propose that CBD exerts potential anti-seizure effects by blocking LPI's synaptic effects and dampening hyperexcitability.


Subject(s)
Cannabidiol , Mice , Animals , Cannabidiol/pharmacology , Hippocampus/physiology , Receptors, G-Protein-Coupled/metabolism , Synapses/physiology , Signal Transduction , Receptors, Cannabinoid/metabolism
10.
Neuron ; 111(8): 1264-1281.e5, 2023 04 19.
Article in English | MEDLINE | ID: mdl-36787751

ABSTRACT

Neurons perform input-output operations that integrate synaptic inputs with intrinsic electrical properties; these operations are generally constrained by the brevity of synaptic events. Here, we report that sustained firing of CA1 hippocampal fast-spiking parvalbumin-expressing interneurons (PV-INs) can be persistently interrupted for several hundred milliseconds following brief GABAAR-mediated inhibition in vitro and in vivo. A single presynaptic neuron could interrupt PV-IN firing, occasionally with a single action potential (AP), and reliably with AP bursts. Experiments and computational modeling reveal that the persistent interruption of firing maintains neurons in a depolarized, quiescent state through a cell-autonomous mechanism. Interrupted PV-INs are strikingly responsive to Schaffer collateral inputs. The persistent interruption of firing provides a disinhibitory circuit mechanism favoring spike generation in CA1 pyramidal cells. Overall, our results demonstrate that neuronal silencing can far outlast brief synaptic inhibition owing to the well-tuned interplay between neurotransmitter release and postsynaptic membrane dynamics, a phenomenon impacting microcircuit function.


Subject(s)
Pyramidal Cells , Synaptic Transmission , Synaptic Transmission/physiology , Pyramidal Cells/physiology , Action Potentials/physiology , Synaptic Membranes , Interneurons/physiology
11.
J Neurosci ; 42(41): 7707-7720, 2022 10 12.
Article in English | MEDLINE | ID: mdl-36414006

ABSTRACT

Oxytocin (OXT) and OXT receptor (OXTR)-mediated signaling control excitability, firing patterns, and plasticity of hippocampal CA2 pyramidal neurons, which are pivotal in generation of brain oscillations and social memory. Nonetheless, the ionic mechanisms underlying OXTR-induced effects in CA2 neurons are not fully understood. Using slice physiology in a reporter mouse line and interleaved current-clamp and voltage-clamp experiments, we systematically identified the ion channels modulated by OXT signaling in CA2 pyramidal cells (PYRs) in mice of both sexes and explored how changes in channel conductance support altered electrical activity. Activation of OXTRs inhibits an outward potassium current mediated by inward rectifier potassium channels (I Kir) and thus favoring membrane depolarization. Concomitantly, OXT signaling also diminishes inward current mediated by hyperpolarization-activated cyclic-nucleotide-gated (HCN) channels (I h), providing a hyperpolarizing drive. The combined reduction in both I Kir and I h synergistically elevate the membrane resistance and favor dendritic integration while the membrane potential is restrained from quickly depolarizing from rest. As a result, the responsiveness of CA2 PYRs to synaptic inputs is highly sharpened during OXTR activation. Unexpectedly, OXTR signaling also strongly enhances a tetrodotoxin-resistant (TTX-R), voltage-gated sodium current that helps drive the membrane potential to spike threshold and thus promote rhythmic firing. This novel array of OXTR-stimulated ionic mechanisms operates in close coordination and underpins OXT-induced burst firing, a key step in CA2 PYRs' contribution to hippocampal information processing and broader influence on brain circuitry. Our study deepens our understanding of underpinnings of OXT-promoted social memory and general neuropeptidergic control of cognitive states.SIGNIFICANCE STATEMENT Oxytocin (OXT) plays key roles in reproduction, parenting and social and emotional behavior, and deficiency in OXT receptor (OXTR) signaling may contribute to neuropsychiatric disorders. We identified a novel array of OXTR-modulated ion channels that operate in close coordination to retune hippocampal CA2 pyramidal neurons, enhancing responsiveness to synaptic inputs and sculpting output. OXTR signaling inhibits both potassium conductance (I Kir) and mixed cation conductance (I h), engaging opposing influences on membrane potential, stabilizing it while synergistically elevating membrane resistance and electrotonic spread. OXT signaling also facilitates a tetrodotoxin-resistant (TTX-R) Na+ current, not previously described in hippocampus (HP), engaged on further depolarization. This TTX-R current lowers the spike threshold and supports rhythmic depolarization and burst firing, a potent driver of downstream circuitry.


Subject(s)
Oxytocin , Potassium Channels, Inwardly Rectifying , Male , Female , Mice , Animals , Oxytocin/metabolism , Tetrodotoxin , Receptors, Oxytocin/metabolism , Pyramidal Cells/metabolism , Potassium
12.
Nat Neurosci ; 25(1): 61-71, 2022 01.
Article in English | MEDLINE | ID: mdl-34980924

ABSTRACT

Hypothalamic melanin-concentrating hormone (MCH) polypeptide contributes to regulating energy homeostasis, sleep and memory, although the mechanistic bases of its effects are unknown. In this study, in mice, we uncovered the physiological mechanism underlying the functional role of MCH signaling in projections to the dorsolateral septum (dLS), a region involved in routing hippocampal firing rhythms and encoding spatial memory based on such rhythms. Firing activity within the dLS in response to dorsal CA3 (dCA3) excitation is limited by strong feed-forward inhibition (FFI). We found that MCH synchronizes dLS neuronal firing with its dCA3 inputs by enhancing GABA release, which subsequently reduces the FFI and augments dCA3 excitatory input strength, both via pre-synaptic mechanisms. At the functional level, our data reveal a role for MCH signaling in the dLS in facilitating spatial memory. These findings support a model in which peptidergic signaling within the dLS modulates dorsal hippocampal output and supports memory encoding.


Subject(s)
Hypothalamic Hormones , Animals , Hippocampus/physiology , Hypothalamic Hormones/metabolism , Melanins , Mice , Pituitary Hormones
13.
Proc Natl Acad Sci U S A ; 118(52)2021 12 28.
Article in English | MEDLINE | ID: mdl-34930847

ABSTRACT

Sudden unexplained death in childhood (SUDC) is an understudied problem. Whole-exome sequence data from 124 "trios" (decedent child, living parents) was used to test for excessive de novo mutations (DNMs) in genes involved in cardiac arrhythmias, epilepsy, and other disorders. Among decedents, nonsynonymous DNMs were enriched in genes associated with cardiac and seizure disorders relative to controls (odds ratio = 9.76, P = 2.15 × 10-4). We also found evidence for overtransmission of loss-of-function (LoF) or previously reported pathogenic variants in these same genes from heterozygous carrier parents (11 of 14 transmitted, P = 0.03). We identified a total of 11 SUDC proband genotypes (7 de novo, 1 transmitted parental mosaic, 2 transmitted parental heterozygous, and 1 compound heterozygous) as pathogenic and likely contributory to death, a genetic finding in 8.9% of our cohort. Two genes had recurrent missense DNMs, RYR2 and CACNA1C Both RYR2 mutations are pathogenic (P = 1.7 × 10-7) and were previously studied in mouse models. Both CACNA1C mutations lie within a 104-nt exon (P = 1.0 × 10-7) and result in slowed L-type calcium channel inactivation and lower current density. In total, six pathogenic DNMs can alter calcium-related regulation of cardiomyocyte and neuronal excitability at a submembrane junction, suggesting a pathway conferring susceptibility to sudden death. There was a trend for excess LoF mutations in LoF intolerant genes, where ≥1 nonhealthy sample in denovo-db has a similar variant (odds ratio = 6.73, P = 0.02); additional uncharacterized genetic causes of sudden death in children might be discovered with larger cohorts.


Subject(s)
Arrhythmias, Cardiac/genetics , Calcium Signaling/genetics , Death, Sudden , Epilepsy/genetics , Child, Preschool , Female , Humans , Infant , Male , Mutation/genetics , Exome Sequencing
14.
Proc Natl Acad Sci U S A ; 118(9)2021 03 02.
Article in English | MEDLINE | ID: mdl-33622785

ABSTRACT

Maintaining the balance between neuronal excitation and inhibition is essential for proper function of the central nervous system. Inhibitory synaptic transmission plays an important role in maintaining this balance. Although inhibitory transmission has higher kinetic demands compared to excitatory transmission, its properties are poorly understood. In particular, the dynamics and exocytosis of single inhibitory vesicles have not been investigated, due largely to both technical and practical limitations. Using a combination of quantum dots (QDs) conjugated to antibodies against the luminal domain of the vesicular GABA transporter to selectively label GABAergic (i.e., predominantly inhibitory) vesicles together with dual-focus imaging optics, we tracked the real-time three-dimensional position of single GABAergic vesicles up to the moment of exocytosis (i.e., fusion). Using three-dimensional trajectories, we found that GABAergic synaptic vesicles traveled a shorter distance prior to fusion and had a shorter time to fusion compared to synaptotagmin-1 (Syt1)-labeled vesicles, which were mostly from excitatory neurons. Moreover, our analysis revealed that GABAergic synaptic vesicles move more straightly to their release sites than Syt1-labeled vesicles. Finally, we found that GABAergic vesicles have a higher prevalence of kiss-and-run fusion than Syt1-labeled vesicles. These results indicate that inhibitory synaptic vesicles have a unique set of dynamics and exocytosis properties to support rapid synaptic inhibition, thereby maintaining a tightly regulated coordination between excitation and inhibition in the central nervous system.


Subject(s)
Exocytosis/physiology , GABA Plasma Membrane Transport Proteins/metabolism , GABAergic Neurons/metabolism , Staining and Labeling/methods , Synaptic Vesicles/metabolism , Animals , Animals, Newborn , Antibodies/chemistry , Calcium/metabolism , GABA Plasma Membrane Transport Proteins/chemistry , GABAergic Neurons/cytology , Hippocampus/cytology , Hippocampus/metabolism , Imaging, Three-Dimensional , Immunoconjugates/chemistry , Ion Transport , Membrane Fusion/physiology , Primary Cell Culture , Quantum Dots/chemistry , Rats , Rats, Sprague-Dawley , Synaptic Transmission , Synaptotagmin I/chemistry , Synaptotagmin I/metabolism
15.
Nat Commun ; 11(1): 5318, 2020 10 21.
Article in English | MEDLINE | ID: mdl-33087709

ABSTRACT

Synaptic vesicles (SVs) can be pooled across multiple synapses, prompting questions about their dynamic allocation for neurotransmission and plasticity. We find that the axonal traffic of recycling vesicles is not supported by ubiquitous microtubule-based motility but relies on actin instead. Vesicles freed from synaptic clusters undergo ~1 µm bouts of active transport, initiated by nearby elongation of actin filaments. Long distance translocation arises when successive bouts of active transport were linked by periods of free diffusion. The availability of SVs for active transport can be promptly increased by protein kinase A, a key player in neuromodulation. Vesicle motion is in turn impeded by shutting off axonal actin polymerization, mediated by nitric oxide-cyclic GMP signaling leading to inhibition of RhoA. These findings provide a potential framework for coordinating post-and pre-synaptic strength, using retrograde regulation of axonal actin dynamics to mobilize and recruit presynaptic SV resources.


Subject(s)
Actin Cytoskeleton/physiology , Cyclic AMP-Dependent Protein Kinases/physiology , Nitric Oxide/physiology , Synaptic Vesicles/physiology , Animals , Axonal Transport/physiology , Biological Transport, Active , Cells, Cultured , Cyclic GMP/physiology , Female , Hippocampus/cytology , Hippocampus/physiology , Luminescent Proteins/metabolism , Male , Neurons/physiology , Nocodazole/pharmacology , Rats , Rats, Sprague-Dawley , Synaptic Transmission/physiology , Synaptic Vesicles/drug effects
16.
Cell ; 181(7): 1547-1565.e15, 2020 06 25.
Article in English | MEDLINE | ID: mdl-32492405

ABSTRACT

Homeostasis of neural firing properties is important in stabilizing neuronal circuitry, but how such plasticity might depend on alternative splicing is not known. Here we report that chronic inactivity homeostatically increases action potential duration by changing alternative splicing of BK channels; this requires nuclear export of the splicing factor Nova-2. Inactivity and Nova-2 relocation were connected by a novel synapto-nuclear signaling pathway that surprisingly invoked mechanisms akin to Hebbian plasticity: Ca2+-permeable AMPA receptor upregulation, L-type Ca2+ channel activation, enhanced spine Ca2+ transients, nuclear translocation of a CaM shuttle, and nuclear CaMKIV activation. These findings not only uncover commonalities between homeostatic and Hebbian plasticity but also connect homeostatic regulation of synaptic transmission and neuronal excitability. The signaling cascade provides a full-loop mechanism for a classic autoregulatory feedback loop proposed ∼25 years ago. Each element of the loop has been implicated previously in neuropsychiatric disease.


Subject(s)
Large-Conductance Calcium-Activated Potassium Channels/metabolism , Long-Term Potentiation/physiology , Nerve Tissue Proteins/metabolism , RNA-Binding Proteins/metabolism , Action Potentials/physiology , Alternative Splicing/genetics , Alternative Splicing/physiology , Animals , Calcium-Calmodulin-Dependent Protein Kinase Type 1/metabolism , Calcium-Calmodulin-Dependent Protein Kinases/metabolism , Female , HEK293 Cells , Homeostasis/physiology , Humans , Large-Conductance Calcium-Activated Potassium Channels/genetics , Male , Mice , Mice, Inbred C57BL , Nerve Tissue Proteins/physiology , Neuro-Oncological Ventral Antigen , Neuronal Plasticity/physiology , Neurons/metabolism , RNA-Binding Proteins/physiology , Rats , Rats, Sprague-Dawley , Signal Transduction , Synapses/metabolism , Synaptic Transmission/physiology
17.
18.
Biochem Biophys Res Commun ; 514(3): 1004-1008, 2019 06 30.
Article in English | MEDLINE | ID: mdl-31092326

ABSTRACT

The release of neurotransmitters via the fusion between synaptic vesicles and the presynaptic membrane is an essential step in synaptic transmission. Synaptic vesicles generally undergo two distinct modes of exocytosis called full-collapse fusion and kiss-and-run fusion. In kiss-and-run fusion, the fusion pore of the synaptic vesicle opens transiently without the vesicle collapsing fully into the plasma membrane; thus, each synaptic vesicle can be used multiple times to release neurotransmitters. Despite considerable research, the detailed mechanisms that underlie kiss-and-run fusion remain elusive, particularly the location of synaptic vesicles after kiss-and-run events. To address this question, we performed real-time three-dimensional tracking of single synaptic vesicles labeled with a single quantum dot in the presynaptic terminal of cultured hippocampal neurons and analyzed the three-dimensional trajectories of these vesicles undergoing kiss-and-run fusion. We found that the majority of these synaptic vesicles underwent another exocytosis event within 120 nm of their original fusion site and underwent a second exocytosis event within 10 s of the first fusion event. These results indicate that after kiss-and-run fusion, synaptic vesicles remain relatively close to their original fusion site and can release repeatedly at brief intervals, allowing neurons to maintain neurotransmitter release during bursting activity.


Subject(s)
Synaptic Vesicles/metabolism , Animals , Cells, Cultured , Hippocampus/cytology , Membrane Fusion , Microscopy, Fluorescence , Neurons/cytology , Neurons/metabolism , Optical Imaging , Rats , Synaptic Transmission
19.
Science ; 363(6422): 31-32, 2019 01 04.
Article in English | MEDLINE | ID: mdl-30606833
20.
Neuron ; 100(3): 593-608.e3, 2018 11 07.
Article in English | MEDLINE | ID: mdl-30293821

ABSTRACT

Oxytocin is an important neuromodulator in the mammalian brain that increases information salience and circuit plasticity, but its signaling mechanisms and circuit effect are not fully understood. Here we report robust oxytocinergic modulation of intrinsic properties and circuit operations in hippocampal area CA2, a region of emerging importance for hippocampal function and social behavior. Upon oxytocin receptor activation, CA2 pyramidal cells depolarize and fire bursts of action potentials, a consequence of phospholipase C signaling to modify two separate voltage-dependent ionic processes. A reduction of potassium current carried by KCNQ-based M channels depolarizes the cell; protein kinase C activity attenuates spike rate of rise and overshoot, dampening after-hyperpolarizations. These actions, in concert with activation of fast-spiking interneurons, promote repetitive firing and CA2 bursting; bursting then governs short-term plasticity of CA2 synaptic transmission onto CA1 and, thus, efficacy of information transfer in the hippocampal network.


Subject(s)
Action Potentials/physiology , CA2 Region, Hippocampal/metabolism , Neurons/metabolism , Oxytocin/biosynthesis , Animals , Male , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Transgenic , Oxytocin/genetics , Receptors, Oxytocin/biosynthesis , Receptors, Oxytocin/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...