Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 435(7041): 459-61, 2005 May 26.
Article in English | MEDLINE | ID: mdl-15917800

ABSTRACT

Planetary formation theories suggest that the giant planets formed on circular and coplanar orbits. The eccentricities of Jupiter, Saturn and Uranus, however, reach values of 6 per cent, 9 per cent and 8 per cent, respectively. In addition, the inclinations of the orbital planes of Saturn, Uranus and Neptune take maximum values of approximately 2 degrees with respect to the mean orbital plane of Jupiter. Existing models for the excitation of the eccentricity of extrasolar giant planets have not been successfully applied to the Solar System. Here we show that a planetary system with initial quasi-circular, coplanar orbits would have evolved to the current orbital configuration, provided that Jupiter and Saturn crossed their 1:2 orbital resonance. We show that this resonance crossing could have occurred as the giant planets migrated owing to their interaction with a disk of planetesimals. Our model reproduces all the important characteristics of the giant planets' orbits, namely their final semimajor axes, eccentricities and mutual inclinations.

2.
Nature ; 435(7041): 462-5, 2005 May 26.
Article in English | MEDLINE | ID: mdl-15917801

ABSTRACT

Jupiter's Trojans are asteroids that follow essentially the same orbit as Jupiter, but lead or trail the planet by an angular distance of approximately 60 degrees (co-orbital motion). They are hypothesized to be planetesimals that formed near Jupiter and were captured onto their current orbits while Jupiter was growing, possibly with the help of gas drag and/or collisions. This idea, however, cannot explain some basic properties of the Trojan population, in particular its broad orbital inclination distribution, which ranges up to approximately 40 degrees (ref. 8). Here we show that the Trojans could have formed in more distant regions and been subsequently captured into co-orbital motion with Jupiter during the time when the giant planets migrated by removing neighbouring planetesimals. The capture was possible during a short period of time, just after Jupiter and Saturn crossed their mutual 1:2 resonance, when the dynamics of the Trojan region were completely chaotic. Our simulations of this process satisfactorily reproduce the orbital distribution of the Trojans and their total mass.

3.
Nature ; 435(7041): 466-9, 2005 May 26.
Article in English | MEDLINE | ID: mdl-15917802

ABSTRACT

The petrology record on the Moon suggests that a cataclysmic spike in the cratering rate occurred approximately 700 million years after the planets formed; this event is known as the Late Heavy Bombardment (LHB). Planetary formation theories cannot naturally account for an intense period of planetesimal bombardment so late in Solar System history. Several models have been proposed to explain a late impact spike, but none of them has been set within a self-consistent framework of Solar System evolution. Here we propose that the LHB was triggered by the rapid migration of the giant planets, which occurred after a long quiescent period. During this burst of migration, the planetesimal disk outside the orbits of the planets was destabilized, causing a sudden massive delivery of planetesimals to the inner Solar System. The asteroid belt was also strongly perturbed, with these objects supplying a significant fraction of the LHB impactors in accordance with recent geochemical evidence. Our model not only naturally explains the LHB, but also reproduces the observational constraints of the outer Solar System.

SELECTION OF CITATIONS
SEARCH DETAIL
...