Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Life Sci Alliance ; 7(2)2024 02.
Article in English | MEDLINE | ID: mdl-37957016

ABSTRACT

Cristae membranes have been recently shown to undergo intramitochondrial merging and splitting events. Yet, the metabolic and bioenergetic factors regulating them are unclear. Here, we investigated whether and how cristae morphology and dynamics are dependent on oxidative phosphorylation (OXPHOS) complexes, the mitochondrial membrane potential (ΔΨm), and the ADP/ATP nucleotide translocator. Advanced live-cell STED nanoscopy combined with in-depth quantification were employed to analyse cristae morphology and dynamics after treatment of mammalian cells with rotenone, antimycin A, oligomycin A, and CCCP. This led to formation of enlarged mitochondria along with reduced cristae density but did not impair cristae dynamics. CCCP treatment leading to ΔΨm abrogation even enhanced cristae dynamics showing its ΔΨm-independent nature. Inhibition of OXPHOS complexes was accompanied by reduced ATP levels but did not affect cristae dynamics. However, inhibition of ADP/ATP exchange led to aberrant cristae morphology and impaired cristae dynamics in a mitochondrial subset. In sum, we provide quantitative data of cristae membrane remodelling under different conditions supporting an important interplay between OXPHOS, metabolite exchange, and cristae membrane dynamics.


Subject(s)
Mitochondria , Mitochondrial Membranes , Animals , Carbonyl Cyanide m-Chlorophenyl Hydrazone/metabolism , Mitochondria/metabolism , Mitochondrial Membranes/metabolism , Oxidative Phosphorylation , Adenosine Triphosphate/metabolism , Mammals/metabolism
3.
Arch Toxicol ; 95(4): 1349-1365, 2021 04.
Article in English | MEDLINE | ID: mdl-33523262

ABSTRACT

A major challenge in current cancer therapy is still the treatment of metastatic melanomas of the skin. BH3 mimetics represent a novel group of substances inducing apoptosis. In this study, we investigated the cytotoxic effect of (±) gossypol (GP), a natural compound from cotton seed, on A375 melanoma cells and the underlying biochemical mechanisms. To prevent undesired side effects due to toxicity on normal (healthy) cells, concentrations only toxic for tumor cells have been elaborated. Viability assays were performed to determine the cytotoxicity of GP in A375 melanoma and normal (healthy) cells. For the majority of experiments, a concentration of 2.5 µM GP was used resulting in a ROS-independent but caspase-dependent cell death of A375 melanoma cells. At this level, GP was non-toxic for normal human epidermal melanocytes. GP has a very short half-life, however, it was demonstrated that only the "parent" compound and not decomposition products are responsible for the cytotoxic effect in A375 melanoma cells. GP significantly decreased mitochondrial membrane potential accompanied by a Drp1-dependent loss of mitochondrial integrity (fragmentation) in tumor cells. Taken together, GP induced a ROS-independent intrinsic apoptosis leading to the conclusion that within a specific concentration range, GP may work as effective anticancer drug without harmful side effects.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Gossypol/pharmacology , Melanoma/drug therapy , Skin Neoplasms/drug therapy , Antineoplastic Agents, Phytogenic/toxicity , Apoptosis/drug effects , Cell Death/drug effects , Cell Line, Tumor , Gossypol/toxicity , Humans , Melanoma/pathology , Membrane Potential, Mitochondrial/drug effects , Mitochondria/drug effects , Reactive Oxygen Species/metabolism , Skin Neoplasms/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...