Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
Genome Biol Evol ; 16(4)2024 04 02.
Article in English | MEDLINE | ID: mdl-38648507

ABSTRACT

Conserved noncoding elements in vertebrates are enriched around transcription factor loci associated with development. However, loss and rapid divergence of conserved noncoding elements has been reported in teleost fish, albeit taking only few genomes into consideration. Taking advantage of the recent increase in high-quality teleost genomes, we focus on studying the evolution of teleost conserved noncoding elements, carrying out targeted genomic alignments and comparisons within the teleost phylogeny to detect conserved noncoding elements and reconstruct the ancestral teleost conserved noncoding elements repertoire. This teleost-centric approach confirms previous observations of extensive vertebrate conserved noncoding elements loss early in teleost evolution, but also reveals massive conserved noncoding elements gain in the teleost stem-group over 300 million years ago. Using synteny-based association to link conserved noncoding elements to their putatively regulated target genes, we show the most teleost gained conserved noncoding elements are found in the vicinity of orthologous loci involved in transcriptional regulation and embryonic development that are also associated with conserved noncoding elements in other vertebrates. Moreover, teleost and vertebrate conserved noncoding elements share a highly similar motif and transcription factor binding site vocabulary. We suggest that early teleost conserved noncoding element gains reflect a restructuring of the ancestral conserved noncoding element repertoire through both extreme divergence and de novo emergence. Finally, we support newly identified pan-teleost conserved noncoding elements have potential for accurate resolution of teleost phylogenetic placements in par with coding sequences, unlike ancestral only elements shared with spotted gar. This work provides new insight into conserved noncoding element evolution with great value for follow-up work on phylogenomics, comparative genomics, and the study of gene regulation evolution in teleosts.


Subject(s)
Conserved Sequence , Evolution, Molecular , Fishes , Phylogeny , Animals , Fishes/genetics , Genome , Synteny
2.
Mol Ecol ; 32(7): 1608-1628, 2023 04.
Article in English | MEDLINE | ID: mdl-36596297

ABSTRACT

By evaluating genetic variation across the entire genome, one can address existing questions in a novel way while raising new ones. The latter includes how different local environments influence adaptive and neutral genomic variation within and among populations, providing insights into local adaptation of natural populations and their responses to global change. Here, under a seascape genomic approach, ddRAD data of 4609 single nucleotide polymorphisms (SNPs) from 398 sardines (Sardina pilchardus) collected in 11 Mediterranean and one Atlantic site were generated. These were used along with oceanographic and ecological information to detect signals of adaptive divergence with gene flow across environmental gradients. The studied sardines constitute two clusters (FST  = 0.07), a pattern attributed to outlier loci, highlighting putative local adaptation. The trend in the number of days with sea surface temperature above 19°C, a critical threshold for successful sardine spawning, was crucial at all levels of population structuring with implications on the species' key biological processes. Outliers link candidate SNPs to the region's environmental heterogeneity. Our findings provide evidence for a dynamic equilibrium in which population structure is maintained by physical and ecological factors under the opposing influences of migration and selection. This dynamic in a natural system warrants continuous monitoring under a seascape genomic approach that might benefit from a temporal and more detailed spatial dimension. Our results may contribute to complementary studies aimed at providing deeper insights into the mechanistic processes underlying population structuring. Those are key to understanding and predicting future changes and responses of this highly exploited species in the face of climate change.


Subject(s)
Genetics, Population , Genomics , Mediterranean Sea , Genome , Adaptation, Physiological/genetics , Polymorphism, Single Nucleotide/genetics
3.
Front Physiol ; 13: 1033445, 2022.
Article in English | MEDLINE | ID: mdl-36388126

ABSTRACT

Background: Treatment with recombinant gonadotropin hormones (rGths), follicle-stimulating hormone (rFsh) and luteinizing hormone (rLh), was shown to induce and complete vitellogenesis to finally obtain viable eggs and larvae in the flathead grey mullet (Mugil cephalus), a teleost arrested at early stages of gametogenesis in intensive captivity conditions. This study aimed to investigate the transcriptomic changes that occur in the ovary of females during the rGths-induced vitellogenesis. Methods: Ovarian samples were collected through biopsies from the same five females at four stages of ovarian development. RNASeq libraries were constructed for all stages studied, sequenced on an Illumina HiSeq4000, and a de novo transcriptome was constructed. Differentially expressed genes (DEGs) were identified between stages and the functional properties of DEGs were characterized by comparison with the gene ontology and Kyoto Encyclopedia. An enrichment analysis of molecular pathways was performed. Results: The de novo transcriptome comprised 287,089 transcripts after filtering. As vitellogenesis progressed, more genes were significantly upregulated than downregulated. The rFsh application induced ovarian development from previtellogenesis to early-to-mid-vitellogenesis with associated pathways enriched from upregulated DEGs related to ovarian steroidogenesis and reproductive development, cholesterol metabolism, ovarian growth and differentiation, lipid accumulation, and cell-to-cell adhesion pathways. The application of rFsh and rLh at early-to-mid-vitellogenesis induced the growth of oocytes to late-vitellogenesis and, with it, the enrichment of pathways from upregulated DEGs related to the production of energy, such as the lysosomes activity. The application of rLh at late-vitellogenesis induced the completion of vitellogenesis with the enrichment of pathways linked with the switch from vitellogenesis to oocyte maturation. Conclusion: The DEGs and enriched molecular pathways described during the induced vitellogenesis of flathead grey mullet with rGths were typical of natural oogenesis reported for other fish species. Present results add new knowledge to the rGths action to further raise the possibility of using rGths in species that present similar reproductive disorders in aquaculture, the aquarium industry as well as the conservation of endangered species.

4.
Animals (Basel) ; 12(9)2022 May 04.
Article in English | MEDLINE | ID: mdl-35565604

ABSTRACT

The pikeperch is a freshwater/brackish water fish species with growing interest for European aquaculture. Wild populations show signs of decline in many areas of the species natural range due to human activities. The comparative evaluation of genetic status in wild and domesticated populations is extremely useful for the future establishment of genetic breeding programs. The main objective of the present study was to assess and compare the genetic variability of 13 domesticated populations from commercial farms and 8 wild populations, developing an efficient microsatellite multiplex tool for genotyping. Partial cytochrome b gene sequences were also used to infer phylogeographic relationships. Results show that on average, the domesticated populations do not exhibit significantly lower levels of genetic diversity compared to the wild ones and do not suffer from inbreeding. Nuclear data provide evidence that pikeperch populations in Europe belong to at least two genetically differentiated groups: the first one is predominantly present in Northern Europe and around the Baltic Sea, while the second one comprises populations from Central Europe. In this second group, Hungarian origin populations constitute a differentiated stock that needs special consideration. Aquaculture broodstocks analyzed appear to contain fish of a single origin with only a few exceptions.

5.
Front Genet ; 13: 804584, 2022.
Article in English | MEDLINE | ID: mdl-35401661

ABSTRACT

Viral nervous necrosis (VNN) is an infectious disease caused by the red-spotted grouper nervous necrosis virus (RGNNV) in European sea bass and is considered a serious concern for the aquaculture industry with fry and juveniles being highly susceptible. To understand the genetic basis for resistance against VNN, a survival phenotype through the challenge test against the RGNNV was recorded in populations from multiple year classes (YC2016 and YC2017). A total of 4,851 individuals from 181 families were tested, and a subset (n∼1,535) belonging to 122 families was genotyped using a ∼57K Affymetrix Axiom array. The survival against the RGNNV showed low to moderate heritability with observed scale estimates of 0.18 and 0.25 obtained using pedigree vs. genomic information, respectively. The genome-wide association analysis showed a strong signal of quantitative trait loci (QTL) at LG12 which explained ∼33% of the genetic variance. The QTL region contained multiple genes (ITPK1, PLK4, HSPA4L, REEP1, CHMP2, MRPL35, and SCUBE) with HSPA4L and/or REEP1 genes being highly relevant with a likely effect on host response in managing disease-associated symptoms. The results on the accuracy of predicting breeding values presented 20-43% advantage in accuracy using genomic over pedigree-based information which varied across model types and applied validation schemes.

6.
BMC Res Notes ; 15(1): 98, 2022 Mar 07.
Article in English | MEDLINE | ID: mdl-35255960

ABSTRACT

OBJECTIVE: The rapid progress in sequencing technology and related bioinformatics tools aims at disentangling diversity and conservation issues through genome analyses. The foremost challenges of the field involve coping with questions emerging from the swift development and application of new algorithms, as well as the establishment of standardized analysis approaches that promote transparency and transferability in research. RESULTS: Here, we present SnakeCube, an automated and containerized whole de novo genome assembly pipeline that runs within isolated, secured environments and scales for use in High Performance Computing (HPC) domains. SnakeCube was optimized for its performance and tested for its effectiveness with various inputs, highlighting its safe and robust universal use in the field.


Subject(s)
Genome , Software , Algorithms , Computational Biology , Genome/genetics , High-Throughput Nucleotide Sequencing , Sequence Analysis, DNA
7.
Animals (Basel) ; 12(3)2022 Jan 23.
Article in English | MEDLINE | ID: mdl-35158601

ABSTRACT

The majority of the genetic studies in aquaculture breeding programs focus on commercial traits such as body weight, morphology, and resistance against diseases. However, studying stress response in European seabass may contribute to the understanding of the genetic component of stress and its future use to select broodstock whose offspring may potentially be less affected by handling. A total of 865 European seabass offspring were used to measure body weight and stress response. Moreover, a disease challenge experiment with Vibrio anguillarum was conducted in a subset (332) of the above fish to study disease resistance. Fish were genotyped with a 57k SNP array, and a Genome-Wide Association study (GWAS) was performed. Five SNPs were found to be statistically significant, three of which affect stress indicators and body weight (in a subgroup of the population), and a putative SNP affects growth performance, while no SNP associated with resistance to Vibrio was found. A moderate to high genomic heritability regarding stress indicators and body weight was estimated using the Restricted Maximum Likelihood (REML) process. Finally, the accuracy, along with the correlation between Estimated Breeding Values (EBVs) and Genomic Estimated Breeding Values (GEBVs), were calculated for all the traits.

8.
Front Genet ; 13: 1081760, 2022.
Article in English | MEDLINE | ID: mdl-36704347

ABSTRACT

The meagre, Argyrosomus regius, has recently become a species of increasing economic interest for the Mediterranean aquaculture and there is ongoing work to boost production efficiency through selective breeding. Access to the complete genomic sequence will provide an essential resource for studying quantitative trait-associated loci and exploring the genetic diversity of different wild populations and aquaculture stocks in more detail. Here, we present the first complete genome for A. regius, produced through a combination of long and short read technologies and an efficient in-house developed pipeline for assembly and polishing. Scaffolding using previous linkage map data allowed us to reconstruct a chromosome level assembly with high completeness, complemented with gene annotation and repeat masking. The 696 Mb long assembly has an N50 = 27.87 Mb and an L50 = 12, with 92.85% of its length placed in 24 chromosomes. We use this new resource to study the evolution of the meagre genome and other Sciaenids, via a comparative analysis of 25 high-quality teleost genomes. Combining a rigorous investigation of gene duplications with base-wise conservation analysis, we identify candidate loci related to immune, fat metabolism and growth adaptations in the meagre. Following phylogenomic reconstruction, we show highly conserved synteny within Sciaenidae. In contrast, we report rapidly evolving syntenic rearrangements and gene copy changes in the sex-related dmrt1 neighbourhood in meagre and other members of the family. These novel genomic datasets and findings will add important new tools for aquaculture studies and greatly facilitate husbandry and breeding work in the species.

9.
Front Genet ; 12: 790850, 2021.
Article in English | MEDLINE | ID: mdl-34956332

ABSTRACT

The Tetraodontidae family encompasses several species which attract scientific interest in terms of their ecology and evolution. The silver-cheeked toadfish (Lagocephalus sceleratus) is a well-known "invasive sprinter" that has invaded and spread, in less than a decade, throughout the Eastern and part of the Western Mediterranean Sea from the Red Sea through the Suez Canal. In this study, we built and analysed the first near-chromosome level genome assembly of L. sceleratus and explored its evolutionary landscape. Through a phylogenomic analysis, we positioned L. sceleratus closer to T. nigroviridis, compared to other members of the family, while gene family evolution analysis revealed that genes associated with the immune response have experienced rapid expansion, providing a genetic basis for studying how L. sceleratus is able to achieve highly successful colonisation. Moreover, we found that voltage-gated sodium channel (NaV 1.4) mutations previously connected to tetrodotoxin resistance in other pufferfishes are not found in L. sceleratus, highlighting the complex evolution of this trait. The high-quality genome assembly built here is expected to set the ground for future studies on the species biology.

10.
Gigascience ; 10(8)2021 08 18.
Article in English | MEDLINE | ID: mdl-34405237

ABSTRACT

High-performance computing (HPC) systems have become indispensable for modern marine research, providing support to an increasing number and diversity of users. Pairing with the impetus offered by high-throughput methods to key areas such as non-model organism studies, their operation continuously evolves to meet the corresponding computational challenges. Here, we present a Tier 2 (regional) HPC facility, operating for over a decade at the Institute of Marine Biology, Biotechnology, and Aquaculture of the Hellenic Centre for Marine Research in Greece. Strategic choices made in design and upgrades aimed to strike a balance between depth (the need for a few high-memory nodes) and breadth (a number of slimmer nodes), as dictated by the idiosyncrasy of the supported research. Qualitative computational requirement analysis of the latter revealed the diversity of marine fields, methods, and approaches adopted to translate data into knowledge. In addition, hardware and software architectures, usage statistics, policy, and user management aspects of the facility are presented. Drawing upon the last decade's experience from the different levels of operation of the Institute of Marine Biology, Biotechnology, and Aquaculture HPC facility, a number of lessons are presented; these have contributed to the facility's future directions in light of emerging distribution technologies (e.g., containers) and Research Infrastructure evolution. In combination with detailed knowledge of the facility usage and its upcoming upgrade, future collaborations in marine research and beyond are envisioned.


Subject(s)
Computing Methodologies , Marine Biology , Aquaculture/methods , Biotechnology/methods , Marine Biology/methods , Software
11.
BMC Genomics ; 22(1): 111, 2021 Feb 09.
Article in English | MEDLINE | ID: mdl-33563212

ABSTRACT

BACKGROUND: In fish, minimally invasive blood sampling is widely used to monitor physiological stress with blood plasma biomarkers. As fish blood cells are nucleated, they might be a source a potential new markers derived from 'omics technologies. We modified the epiGBS (epiGenotyping By Sequencing) technique to explore changes in genome-wide cytosine methylation in the red blood cells (RBCs) of challenged European sea bass (Dicentrarchus labrax), a species widely studied in both natural and farmed environments. RESULTS: We retrieved 501,108,033 sequencing reads after trimming, with a mean mapping efficiency of 73.0% (unique best hits). Minor changes in RBC methylome appeared to manifest after the challenge test and a family-effect was detected. Only fifty-seven differentially methylated cytosines (DMCs) close to 51 distinct genes distributed on 17 of 24 linkage groups (LGs) were detected between RBCs of pre- and post-challenge individuals. Thirty-seven of these genes were previously reported as differentially expressed in the brain of zebrafish, most of them involved in stress coping differences. While further investigation remains necessary, few DMC-related genes associated to the Brain Derived Neurotrophic Factor, a protein that favors stress adaptation and fear memory, appear relevant to integrate a centrally produced stress response in RBCs. CONCLUSION: Our modified epiGBS protocol was powerful to analyze patterns of cytosine methylation in RBCs of D. labrax and to evaluate the impact of a challenge using minimally invasive blood samples. This study is the first approximation to identify epigenetic biomarkers of exposure to stress in fish.


Subject(s)
Bass , Animals , Bass/genetics , Epigenomics , Erythrocytes , Genetic Linkage , Zebrafish
12.
Pathogens ; 10(2)2021 Jan 21.
Article in English | MEDLINE | ID: mdl-33494355

ABSTRACT

Wild fish assemblages that aggregate within commercial marine aquaculture sites for feeding and shelter have been considered as a primary source of pathogenic parasites vectored to farmed fish maintained in net pens at an elevated density. In order to evaluate whether Ceratothoa oestroides (Isopoda, Cymothoidae), a generalist and pestilent isopod that is frequently found in Adriatic and Greek stocks of farmed European sea bass (Dicentrarchus labrax), transfers between wild and farmed fish, a RAD-Seq (restriction-site-associated DNA sequencing)-mediated genetic screening approach was employed. The double-digest RAD-Seq of 310 C. oestroides specimens collected from farmed European sea bass (138) and different wild farm-aggregating fish (172) identified 313 robust SNPs that evidenced a close genetic relatedness between the "wild" and "farmed" genotypes. ddRAD-Seq proved to be an effective method for detecting the discrete genetic structuring of C. oestroides and genotype intermixing between two populations. The parasite prevalence in the farmed sea bass was 1.02%, with a mean intensity of 2.0 and mean abundance of 0.02, while in the wild fish, the prevalence was 8.1%; the mean intensity, 1.81; and the mean abundance, 0.15. Such differences are likely a consequence of human interventions during the farmed fish's rearing cycle that, nevertheless, did not affect the transfer of C. oestroides.

13.
Animals (Basel) ; 10(9)2020 Sep 16.
Article in English | MEDLINE | ID: mdl-32948016

ABSTRACT

There is a growing interest in selective breeding in European sea bass (Dicentrarchus labrax), especially regarding family selection based on growth performance. In particular, quantitative trait loci (QTL) identification in sea bass enhances the application of marker-assisted breeding for the genetic improvement of the production traits. The aims of the study were to identify potential QTL affecting stress and immunological indicators, body weight, and mortality after vibriosis injection in sea bass as well as to estimate heritability and genetic/phenotypic correlations for the aforementioned traits. To this end, stress test was performed on 960 offspring and a sub-group of them (420) was selected to explore the mortality after vibrio injection. Selective genotyping was performed in 620 offspring for 35 microsatellite markers and distributed into 6 linkage groups. The length of the genetic linkage map was 283.6 cM and the mean distance between the markers was 8.1 cM. QTL affecting body weight in three different growth periods detected on linkage groups LG1, LG4, LG6, and LG14. A QTL associated with weight in early growth stages (290-306 days post-hatching) was also identified on LG3. QTL analysis confirmed the existence of QTL affecting cortisol levels, on LG3 and LG14. Moreover, new QTL affecting only cortisol and glucose levels were detected on LG1 and LG23. No QTL affecting hormonal or biochemical marks was found on LG4 and LG6. Heritability of cortisol, lysozyme levels, and mortality were high (0.36, 0.55, and 0.38, respectively).

14.
Front Genet ; 11: 594770, 2020.
Article in English | MEDLINE | ID: mdl-33424925

ABSTRACT

Gilthead sea bream (Sparus aurata) belongs to a group of teleost which has high importance in Mediterranean aquaculture industry. However, industrial production is increasingly compromised by an elevated outbreak of diseases in sea cages, especially a disease caused by monogeneans parasite Sparicotyle chrysophrii. This parasite mainly colonizes gill tissues of host and causes considerable economical losses with mortality and reduction in growth. The aim of current study was to explore the genetics of host resistance against S. chrysophrii and investigate the potential for genomic selection to possibly accelerate genetic progress. To achieve the desired goals, a test population derived from the breeding nucleus of Andromeda Group was produced. This experimental population was established by crossing of parents mated in partial factorial crosses of ∼8 × 8 using 58 sires and 62 dams. The progeny obtained from this mating design was challenged with S. chrysophrii using a controllable cohabitation infection model. At the end of the challenge, fish were recorded for parasite count, and all the recorded fish were tissue sampled for genotyping by sequencing using 2b-RAD methodology. The initial (before challenge test) and the final body weight (after challenge test) of the fish were also recorded. The results obtained through the analysis of phenotypic records (n = 615) and the genotypic data (n = 841, 724 offspring and 117 parents) revealed that the resistance against this parasite is lowly heritable (h 2 = 0.147 with pedigree and 0.137 with genomic information). We observed moderately favorable genetic correlation (R g = -0.549 to -0.807) between production traits (i.e., body weight and specific growth rate) and parasite count, which signals a possibility of indirect selection. A locus at linkage group 17 was identified that surpassed chromosome-wide Bonferroni threshold which explained 22.68% of the total genetic variance, and might be playing role in producing genetic variation. The accuracy of prediction was improved by 8% with genomic information compared to pedigree.

15.
BMC Res Notes ; 12(1): 813, 2019 Dec 18.
Article in English | MEDLINE | ID: mdl-31852508

ABSTRACT

OBJECTIVES: We report a transcriptome acquisition for the bath sponge Spongia officinalis, a non-model marine organism that hosts rich symbiotic microbial communities. To this end, a pipeline was developed to efficiently separate between bacterial expressed genes from those of eukaryotic origin. The transcriptome was produced to support the assessment of gene expression and, thus, the response of the sponge, to elevated temperatures, replicating conditions currently occurring in its native habitat. DATA DESCRIPTION: We describe the assembled transcriptome along with the bioinformatic pipeline used to discriminate between signals of metazoan and prokaryotic origin. The pipeline involves standard read pre-processing steps and incorporates extra analyses to identify and filter prokaryotic reads out of the analysis. The proposed pipeline can be followed to overcome the technical RNASeq problems characteristic for symbiont-rich metazoan organisms with low or non-existent tissue differentiation, such as sponges and cnidarians. At the same time, it can be valuable towards the development of approaches for parallel transcriptomic studies of symbiotic communities and the host.


Subject(s)
Microbiota/genetics , Porifera/genetics , Symbiosis/genetics , Transcriptome/genetics , Animals , Aquatic Organisms/genetics , Aquatic Organisms/metabolism , Computational Biology , Greece , Phylogeny , Porifera/microbiology , RNA, Ribosomal/genetics , RNA-Seq/methods
16.
Commun Biol ; 2: 400, 2019.
Article in English | MEDLINE | ID: mdl-31701028

ABSTRACT

Sparidae (Teleostei: Spariformes) are a family of fish constituted by approximately 150 species with high popularity and commercial value, such as porgies and seabreams. Although the phylogeny of this family has been investigated multiple times, its position among other teleost groups remains ambiguous. Most studies have used a single or few genes to decipher the phylogenetic relationships of sparids. Here, we conducted a thorough phylogenomic analysis using five recently available Sparidae gene-sets and 26 high-quality, genome-predicted teleost proteomes. Our analysis suggested that Tetraodontiformes (puffer fish, sunfish) are the closest relatives to sparids than all other groups used. By analytically comparing this result to our own previous contradicting finding, we show that this discordance is not due to different orthology assignment algorithms; on the contrary, we prove that it is caused by the increased taxon sampling of the present study, outlining the great importance of this aspect in phylogenomic analyses in general.


Subject(s)
Perciformes/classification , Perciformes/genetics , Algorithms , Animals , Databases, Genetic , Phylogeny , Proteome/genetics , Transcriptome
17.
Animals (Basel) ; 9(11)2019 Nov 15.
Article in English | MEDLINE | ID: mdl-31731689

ABSTRACT

Population dynamics in the marine realm can shape species' spatial structure and genetic variability between given geographical areas. Connectivity is an important factor of species' population structure. In this study, we examined the genetic diversity and structure of white seabream (Diplodus sargus, L. 1758) in the eastern Mediterranean basin, using a panel of four microsatellite markers. Recorded low FST values within the study area indicate little evidence of genetic differentiation among populations. Results suggest high gene flow which may imply near-panmixia between populations, indicating the possibility of a probable movement of adult migrants, or strong passive drift at sea in early life stages of the species. To this extent, bibliographically speaking, different species within the Sparidae family favor altered population dynamics patterns with respect to local populations and genetic divergence, in the context of the molecular marker used.

18.
J Biol Res (Thessalon) ; 26: 14, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31728339

ABSTRACT

BACKGROUND: Comprehensively detailed information on population dynamics for benthic species is crucial since potential admixture of individuals could shift the genetic subdivision and age structure during a full breeding period. The apparent genetic impact of the potential recruitment strategy of Norway lobster Nephrops norvegicus is still under research. For this reason the present study was focused on genetic variation of the species over a given continuous year period in a semi-enclosed gulf of the Aegean Sea. RESULTS: Analyses revealed that the relative smaller size class in females and the apparent faster growth of males may represent a key-role differential strategy for the two sexes, whereas females tend to mature slower. Heterozygosity fitness correlations (HFCs) showed substantially significant associations suggesting that inbreeding depression for females and outbreeding depression for males are the proximate fitness mechanisms, respectively. CONCLUSIONS: Nephrops norvegicus uniformal genetic composition (background of high gene flow), could be attributed to potential population recolonization, due to a hypothesized passive larval movement from deeper waters, which may suggest that some offspring of local residents and potential male non-breeders from other regions admixture randomly.

19.
Front Genet ; 10: 675, 2019.
Article in English | MEDLINE | ID: mdl-31447879

ABSTRACT

Gilthead sea bream (Sparus aurata) is a teleost of considerable economic importance in Southern European aquaculture. The aquaculture industry shows a growing interest in the application of genetic methods that can locate phenotype-genotype associations with high economic impact. Through selective breeding, the aquaculture industry can exploit this information to maximize the financial yield. Here, we present a Genome Wide Association Study (GWAS) of 112 samples belonging to seven different sea bream families collected from a Greek commercial aquaculture company. Through double digest Random Amplified DNA (ddRAD) Sequencing, we generated a per-sample genetic profile consisting of 2,258 high-quality Single Nucleotide Polymorphisms (SNPs). These profiles were tested for association with four phenotypes of major financial importance: Fat, Weight, Tag Weight, and the Length to Width ratio. We applied two methods of association analysis. The first is the typical single-SNP to phenotype test, and the second is a feature selection (FS) method through two novel algorithms that are employed for the first time in aquaculture genomics and produce groups with multiple SNPs associated to a phenotype. In total, we identified 9 single SNPs and 6 groups of SNPs associated with weight-related phenotypes (Weight and Tag Weight), 2 groups associated with Fat, and 16 groups associated with the Length to Width ratio. Six identified loci (Chr4:23265532, Chr6:12617755, Chr:8:11613979, Chr13:1098152, Chr15:3260819, and Chr22:14483563) were present in genes associated with growth in other teleosts or even mammals, such as semaphorin-3A and neurotrophin-3. These loci are strong candidates for future studies that will help us unveil the genetic mechanisms underlying growth and improve the sea bream aquaculture productivity by providing genomic anchors for selection programs.

20.
Commun Biol ; 1: 119, 2018.
Article in English | MEDLINE | ID: mdl-30271999

ABSTRACT

Sexual dimorphism is a fascinating subject in evolutionary biology and mostly results from sex-biased expression of genes, which have been shown to evolve faster in gonochoristic species. We report here genome and sex-specific transcriptome sequencing of Sparus aurata, a sequential hermaphrodite fish. Evolutionary comparative analysis reveals that sex-biased genes in S. aurata are similar in number and function, but evolved following strikingly divergent patterns compared with gonochoristic species, showing overall slower rates because of stronger functional constraints. Fast evolution is observed only for highly ovary-biased genes due to female-specific patterns of selection that are related to the peculiar reproduction mode of S. aurata, first maturing as male, then as female. To our knowledge, these findings represent the first genome-wide analysis on sex-biased loci in a hermaphrodite vertebrate species, demonstrating how having two sexes in the same individual profoundly affects the fate of a large set of evolutionarily relevant genes.

SELECTION OF CITATIONS
SEARCH DETAIL
...