Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mater Sci Eng C Mater Biol Appl ; 126: 112192, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34082989

ABSTRACT

Piezoelectric ceramics, such as BaTiO3, have gained considerable attention in bone tissue engineering applications thanks to their biocompatibility, ability to sustain a charged surface as well as improve bone cells' adhesion and proliferation. However, the poor processability and brittleness of these materials hinder the fabrication of three-dimensional scaffolds for load bearing tissue engineering applications. For the first time, this study focused on the fabrication and characterisation of BaTiO3 composite scaffolds by using a multi-material 3D printing technology. Polycaprolactone (PCL) was selected and used as dispersion phase for its low melting point, easy processability and wide adoption in bone tissue engineering. The proposed single-step extrusion-based strategy enabled a faster and solvent-free process, where raw materials in powder forms were mechanically mixed and subsequently fed into the 3D printing system for further processing. PCL, PCL/hydroxyapatite and PCL/BaTiO3 composite scaffolds were successfully produced with high level of consistency and an inner architecture made of seamlessly integrated layers. The inclusion of BaTiO3 ceramic particles (10% wt.) significantly improved the mechanical performance of the scaffolds (54 ± 0.5 MPa) compared to PCL/hydroxyapatite scaffolds (40.4 ± 0.1 MPa); moreover, the presence of BaTiO3 increased the dielectric permittivity over the entire frequency spectrum and tested temperatures. Human osteoblasts Saos-2 were seeded on scaffolds and cellular adhesion, proliferation, differentiation and deposition of bone-like extracellular matrix were evaluated. All tested scaffolds (PCL, PCL/hydroxyapatite and PCL/BaTiO3) supported cell growth and viability, preserving the characteristic cellular osteoblastic phenotype morphology, with PCL/BaTiO3 composite scaffolds exhibiting higher mineralisation (ALP activity) and deposited bone-like extracellular matrix (osteocalcin and collagen I). The single-step multi-material additive manufacturing technology used for the fabrication of electroactive PCL/BaTiO3 composite scaffolds holds great promise for sustainability (reduced material waste and manufacturing costs) and it importantly suggests PCL/BaTiO3 scaffolds as promising candidates for load bearing bone tissue engineering applications to solve unmet clinical needs.


Subject(s)
Tissue Engineering , Tissue Scaffolds , Barium Compounds , Durapatite , Humans , Polyesters , Printing, Three-Dimensional , Titanium , Weight-Bearing
2.
iScience ; 24(1): 101987, 2021 Jan 22.
Article in English | MEDLINE | ID: mdl-33490897

ABSTRACT

Wearable electronics are becoming increasingly important for medical applications as they have revolutionized the way physiological parameters are monitored. Ferroelectric materials show spontaneous polarization below the Curie temperature, which changes with electric field, temperature, and mechanical deformation. Therefore, they have been widely used in sensor and actuator applications. In addition, these materials can be used for conversion of human-body energy into electricity for powering wearable electronics. In this paper, we review the recent advances in flexible ferroelectric materials for wearable human energy harvesting and sensing. To meet the performance requirements for medical applications, the most suitable materials and manufacturing techniques are reviewed. The approaches used to enhance performance and achieve long-term sustainability and multi-functionality by integrating other active sensing mechanisms (e.g. triboelectric and piezoresistive effects) are discussed. Data processing and transmission as well as the contribution of wearable piezoelectric devices in early disease detection and monitoring vital signs are reviewed.

SELECTION OF CITATIONS
SEARCH DETAIL
...