Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Polymers (Basel) ; 15(13)2023 Jun 22.
Article in English | MEDLINE | ID: mdl-37447432

ABSTRACT

Herein, polytetrafluoroethylene (PTFE) is evaluated as a reinforcement agent in material extrusion (MEX) additive manufacturing (AM), aiming to develop nanocomposites with enhanced mechanical performance. Loadings up to 4.0 wt.% were introduced as fillers of polylactic acid (PLA) and polyamide 12 (PA12) matrices. Filaments for MEX AM were prepared to produce corresponding 3D-printed samples. For the thorough characterization of the nanocomposites, a series of standardized mechanical tests were followed, along with AFM, TGA, Raman spectroscopy, EDS, and SEM analyses. The results showed an improved mechanical response for filler concentrations between 2.0 and 3.0 wt.%. The enhancement for the PLA/PTFE 2.0 wt.% in the tensile strength reached 21.1% and the modulus of elasticity 25.5%; for the PA12/PTFE 3.0 wt.%, 34.1%, and 41.7%, respectively. For PLA/PTFE 2.0 wt.%, the enhancement in the flexural strength reached 57.6% and the modulus of elasticity 25.5%; for the PA12/PTFE 3.0 wt.%, 14.7%, and 17.2%, respectively. This research enables the ability to deploy PTFE as a reinforcement agent in the PA12 and PLA thermoplastic engineering polymers in the MEX AM process, expanding the potential applications.

2.
Nanomaterials (Basel) ; 13(13)2023 Jun 21.
Article in English | MEDLINE | ID: mdl-37446421

ABSTRACT

The influence of nanoparticles (NPs) in zirconium oxide (ZrO2) as a strengthening factor of Polylactic Acid (PLA) and Polyamide 12 (PA12) thermoplastics in material extrusion (MEX) additive manufacturing (AM) is reported herein for the first time. Using a melt-mixing compounding method, zirconium dioxide nanoparticles were added at four distinct filler loadings. Additionally, 3D-printed samples were carefully examined for their material performance in various standardized tests. The unfilled polymers were the control samples. The nature of the materials was demonstrated by Raman spectroscopy and thermogravimetric studies. Atomic Force Microscopy and Scanning Electron Microscopy were used to comprehensively analyze their morphological characteristics. Zirconium dioxide NPs showed an affirmative reinforcement tool at all filler concentrations, while the optimized material was calculated with loading in the range of 1.0-3.0 wt.% (3.0 wt.% for PA12, 47.7% increase in strength; 1.0 wt.% for PLA, 20.1% increase in strength). PA12 and PLA polymers with zirconium dioxide in the form of nanocomposite filaments for 3D printing applications could be used in implementations using thermoplastic materials in engineering structures with improved mechanical behavior.

3.
Nanomaterials (Basel) ; 13(5)2023 Feb 26.
Article in English | MEDLINE | ID: mdl-36903761

ABSTRACT

The most widely used material as a hole-transport layer (HTL) for effective normal perovskite solar cells (PSCs) is still 2,2',7,7'-Tetrakis[N, N-di(4-methoxyphenyl)amino]-9,9'-spirobifluorene (Spiro-OMeTAD), which requires heavy doping with the hydroscopic Lithium bis(trifluoromethanesulfonyl)imide (Li-ΤFSI). However, the long-term stability and performance of PCSs are frequently hampered by the residual insoluble dopants in the HTL, Li+ diffusion throughout the device, dopant by-products, and the hygroscopic nature of Li-TFSI. Due to the high cost of Spiro-OMeTAD, alternative efficient low-cost HTLs, such as octakis(4-methoxyphenyl)spiro[fluorene-9,9'-xanthene]-2,2',7,7'-tetraamine) (X60), have attracted attention. However, they require doping with Li-TFSI, and the devices develop the same Li-TFSI-derived problems. Here, we propose Li-free 1-Ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide (EMIM-TFSI) as an efficient p-type dopant of X60, resulting in a high-quality HTL with enhanced conductivity and deeper energy levels The optimized X60:EMIM-TFSI-enabled devices exhibit a higher efficiency of 21.85% and improved stability, compared to the Li-TFSI-doped X60 devices. The stability of the optimized EMIM-TFSI-doped PSCs is greatly improved, and after 1200 hr of storage under ambient conditions, the resulting PSCs maintain 85% of the initial PCE. These findings offer a fresh method for doping the cost effective X60 as the HTL with a Li-free alternative dopant for efficient, cheaper, and reliable planar PSCs.

4.
Nanomaterials (Basel) ; 13(4)2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36839037

ABSTRACT

Acrylonitrile Butadiene Styrene (ABS) nanocomposites were developed using Material Extrusion (MEX) Additive Manufacturing (AM) and Fused Filament Fabrication (FFF) methods. A range of mechanical tests was conducted on the produced 3D-printed structures to investigate the effect of Titanium Nitride (TiN) nanoparticles on the mechanical response of thermoplastic polymers. Detailed morphological characterization of the produced filaments and 3D-printed specimens was carried out using Atomic Force Microscopy (AFM) and Scanning Electron Microscopy (SEM). High-magnification images revealed a direct impact of the TiN concentration on the surface characteristics of the nanocomposites, indicating a strong correlation with their mechanical performance. The chemical compositions of the raw and nanocomposite materials were thoroughly investigated by conducting Raman and Energy Dispersive Spectroscopy (EDS) measurements. Most of the mechanical properties were improved with the inclusion of TiN nanoparticles with a content of 6 wt. % to reach the optimum mechanical response overall. ABS/TiN 6 wt. % exhibits remarkable increases in flexural modulus of elasticity (42.3%) and toughness (54.0%) in comparison with pure ABS. The development of ABS/TiN nanocomposites with reinforced mechanical properties is a successful example that validates the feasibility and powerful abilities of MEX 3D printing in AM.

5.
Polymers (Basel) ; 14(3)2022 Jan 22.
Article in English | MEDLINE | ID: mdl-35160430

ABSTRACT

During the COVID-19 pandemic, wide use of 3D printing technologies has been enabled. Fused filament fabrication (FFF) is the most widely used technique in 3D printing communities worldwide for the fabrication of medical components such as face shields and respiratory valves. In the current study, the potential of Polyamide 12 (PA12) silver-doped antibacterial nanopowder (AgDANP) nanocomposites is evaluated for everyday FFF usage. Filling loadings of 1.0-2.0-3.0 and 4.0 wt.% were selected for nanocomposite preparation. Mechanical performance analysis was conducted on the basis of tensile, flexural, impact, and Vickers microhardness measurements in FFF 3D-printed specimens. Scanning Electron Microscopy (SEM) images were used for morphology and processing evaluation, as well as thermal performance measurements, conducted by Thermogravimetric Analysis (TGA) tests. Finally, the antibacterial performance was tested using the agar-well diffusion screening method, and the shape effect of the specimens was also investigated. The addition of 2.0 wt.% AgDANPs resulted in an enhancement of approximately 27% for both tensile and flexural stresses, while the antibacterial performance was sufficiently high among the nanocomposites tested. The shape effect exhibited the potential for antibacterial performance at low filling ratios, while the effect was diminished with increasing filler of AgDANPs.

6.
Biomimetics (Basel) ; 7(1)2022 Jan 02.
Article in English | MEDLINE | ID: mdl-35076452

ABSTRACT

Metals, such as silver, gold, and copper are known for their biocidal properties, mimicking the host defense peptides (HDPs) of the immune system. Developing materials with such properties has great importance in medicine, especially when combined with 3D printing technology, which is an additional asset for various applications. In this work, copper nanoparticles were used as filler in stereolithography (SLA) ultraviolet (UV) cured commercial resin to induce such biocidal properties in the material. The nanocomposites developed featured enhanced mechanical responses when compared with the neat material. The prepared nanocomposites were employed to manufacture specimens with the SLA process, to be tested for their mechanical response according to international standards. The process followed was evaluated with Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), energy-dispersive X-ray spectroscopy (EDS), and thermogravimetric analysis (TGA). The antibacterial activity of the fabricated nanocomposites was evaluated using the agar-well diffusion method. Results showed enhanced mechanical performance of approximately 33.7% in the tensile tests for the nanocomposites filled with 1.0 wt.%. ratios, when compared to the neat matrix material, while this loading showed sufficient antibacterial performance when compared to lower filler loadings, providing an added value for the fabrication of effective nanocomposites in medical applications with the SLA process.

7.
Sustain Energy Fuels ; 6(23): 5345-5359, 2022 Nov 22.
Article in English | MEDLINE | ID: mdl-36776412

ABSTRACT

Hybrid organic-inorganic perovskite solar cells (PSCs) are attractive printable, flexible, and cost-effective optoelectronic devices constituting an alternative technology to conventional Si-based ones. The incorporation of low-dimensional materials, such as two-dimensional (2D) materials, into the PSC structure is a promising route for interfacial and bulk perovskite engineering, paving the way for improved power conversion efficiency (PCE) and long-term stability. In this work, we investigate the incorporation of 2D bismuth telluride iodide (BiTeI) flakes as additives in the perovskite active layer, demonstrating their role in tuning the interfacial energy-level alignment for optimum device performance. By varying the concentration of BiTeI flakes in the perovskite precursor solution between 0.008 mg mL-1 and 0.1 mg mL-1, a downward shift in the energy levels of the perovskite results in an optimal alignment of the energy levels of the materials across the cell structure, as supported by device simulations. Thus, the cell fill factor (FF) increases with additive concentration, reaching values greater than 82%, although the suppression of open circuit voltage (V oc) is reported beyond an additive concentration threshold of 0.03 mg mL-1. The most performant devices delivered a PCE of 18.3%, with an average PCE showing a +8% increase compared to the reference devices. This work demonstrates the potential of 2D-material-based additives for the engineering of PSCs via energy level optimization at perovskite/charge transporting layer interfaces.

8.
Nanoscale Adv ; 3(11): 3124-3135, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-36133666

ABSTRACT

Perovskite solar cells (PSCs) have proved their potential for delivering high power conversion efficiencies (PCE) alongside low fabrication cost and high versatility. The stability and the PCE of PSCs can readily be improved by implementing engineering approaches that entail the incorporation of two-dimensional (2D) materials across the device's layered configuration. In this work, two-dimensional (2D) 6R-TaS2 flakes were exfoliated and incorporated as a buffer layer in inverted PSCs, enhancing the device's PCE, lifetime and thermal stability. A thin buffer layer of 6R-TaS2 flakes was formed on top of the electron transport layer to facilitate electron extraction, thus improving the overall device performance. The optimized devices reach a PCE of 18.45%, representing a 12% improvement compared to the reference cell. The lifetime stability measurements of the devices under ISOS-L2, ISOS-D1, ISOS-D1I and ISOS-D2I protocols revealed that the TaS2 buffer layer retards the intrinsic, thermally activated degradation processes of the PSCs. Notably, the devices retain more than the 80% of their initial PCE over 330 h under continuous 1 Sun illumination at 65 °C.

9.
ACS Appl Energy Mater ; 2(3): 2276-2287, 2019 Mar 25.
Article in English | MEDLINE | ID: mdl-31168522

ABSTRACT

We present the functionalization process of a conductive and transparent CuAlO2/Cu-O hole-transporting layer (HTL). The CuAlO2/Cu-O powders were developed by flame spray pyrolysis and their stabilized dispersions were treated by sonication and centrifugation methods. We show that when the supernatant part of the treated CuAlO2/Cu-O dispersions is used for the development of CuAlO2/Cu-O HTLs the corresponding inverted perovskite-based solar cells show improved functionality and power conversion efficiency of up to 16.3% with negligible hysteresis effect.

10.
Phys Chem Chem Phys ; 21(1): 427-437, 2018 Dec 19.
Article in English | MEDLINE | ID: mdl-30534673

ABSTRACT

The investigation of conditions allowing multi-electron reduction and reoxidation of polyoxometalate (POM) films onto solid substrates is considered an issue of critical importance for their successful incorporation in electronic devices, different types of sensors and catalytic systems. In the present paper, the rich multi-electron redox chemistry of films of Wells-Dawson ammonium salts, namely (NH4)6P2Mo18O62 and (NH4)6P2W18O62, on top of metallic (Al), semiconducting (ITO) and dielectric (SiO2) substrates under ambient conditions is investigated. The respective Keggin heteropolyacids, H3PMo12O40 and H3PW12O40, are also investigated for comparison. On Al substrates, the Wells-Dawson ammonium salts are found to be significantly more reduced (4-6e-) compared to the respective Keggin heteropolyacids (∼2e-), in accordance with their deeper lying lowest unoccupied molecular orbital (LUMO) level. Subsequent thermal treatment in air results in reoxidation of the initially highly reduced POM films. Similar behavior is found on ITO substrates, but in initially less reduced (2-4e-) Wells-Dawson POM films. On the other hand, on SiO2 substrates, the thermal reduction of (NH4)6P2Mo18O62 film is observed and attributed to the thermal oxidation of ammonium counterions by [P2Mo18O62]6- anions. Overall, the multi-electron reduction of Wells-Dawson ammonium salts onto metallic and semiconducting substrates (Al, ITO) is determined by the relative position of the LUMO level of POMs in relation to the Fermi level of the substrate (i.e. substrate work function) and affected in a synergistic way by the presence of ammonium counterions. In contrast, on dielectric substrates (SiO2) the reduction of Wells-Dawson POMs ((NH4)6P2Mo18O62) is attributed only to the oxidation of ammonium counterions.

11.
ACS Appl Mater Interfaces ; 10(24): 20728-20739, 2018 Jun 20.
Article in English | MEDLINE | ID: mdl-29785853

ABSTRACT

In the present work, we effectively modify the TiO2 electron transport layer of organic solar cells with an inverted architecture using appropriately engineered porphyrin molecules. The results show that the optimized porphyrin modifier bearing two carboxylic acids as the anchoring groups and a triazine electron-withdrawing spacer significantly reduces the work function of TiO2, thereby reducing the electron extraction barrier. Moreover, the lower surface energy of the porphyrin-modified substrate results in better physical compatibility between the latter and the photoactive blend. Upon employing porphyrin-modified TiO2 electron transport layers in PTB7:PC71BM-based organic solar cells we obtained an improved average power conversion efficiency up to 8.73%. Importantly, porphyrin modification significantly increased the lifetime of the devices, which retained 80% of their initial efficiency after 500 h of storage in the dark. Because of its simplicity and efficacy, this approach should give tantalizing glimpses and generate an impact into the potential of porphyrins to facilitate electron transfer in organic solar cells and related devices.

12.
Sci Rep ; 7(1): 17839, 2017 12 19.
Article in English | MEDLINE | ID: mdl-29259244

ABSTRACT

TiO2 has high chemical stability, strong catalytic activity and is an electron transport material in organic solar cells. However, the presence of trap states near the band edges of TiO2 arising from defects at grain boundaries significantly affects the efficiency of organic solar cells. To become an efficient electron transport material for organic photovoltaics and related devices, such as perovskite solar cells and photocatalytic devices, it is important to tailor its band edges via doping. Nitrogen p-type doping has attracted considerable attention in enhancing the photocatalytic efficiency of TiO2 under visible light irradiation while hydrogen n-type doping increases its electron conductivity. DFT calculations in TiO2 provide evidence that nitrogen and hydrogen can be incorporated in interstitial sites and possibly form NiHi, NiHO and NTiHi defects. The experimental results indicate that NiHi defects are most likely formed and these defects do not introduce deep level states. Furthermore, we show that the efficiency of P3HT:IC60BA-based organic photovoltaic devices is enhanced when using hydrogen-doping and nitrogen/hydrogen codoping of TiO2, both boosting the material n-type conductivity, with maximum power conversion efficiency reaching values of 6.51% and 6.58%, respectively, which are much higher than those of the cells with the as-deposited (4.87%) and nitrogen-doped TiO2 (4.46%).

13.
ACS Appl Mater Interfaces ; 9(27): 22773-22787, 2017 Jul 12.
Article in English | MEDLINE | ID: mdl-28585803

ABSTRACT

Effective interface engineering has been shown to play a vital role in facilitating efficient charge-carrier transport, thus boosting the performance of organic photovoltaic devices. Herein, we employ water-soluble lacunary polyoxometalates (POMs) as multifunctional interlayers between the titanium dioxide (TiO2) electron extraction/transport layer and the organic photoactive film to simultaneously enhance the efficiency, lifetime, and photostability of polymer solar cells (PSCs). A significant reduction in the work function (WF) of TiO2 upon POM utilization was observed, with the magnitude being controlled by the negative charge of the anion and the selection of the addenda atom (W or Mo). By inserting a POM interlayer with ∼10 nm thickness into the device structure, a significant improvement in the power conversion efficiency was obtained; the optimized POM-modified poly[[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl][3-fluoro-2-[(2- 33 ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl]]:[6,6]-phenyl-C70 butyric acid methyl ester (PTB7:PC70BM)-based PSCs exhibited an efficiency of 8.07%, which represents a 21% efficiency enhancement compared to the reference TiO2 cell. Similar results were obtained in POM-modified devices based on poly(3-hexylthiophene) (P3HT) with electron acceptors of different energy levels, such as PC70BM or indene-C60 bisadduct (IC60BA), which enhanced their efficiency up to 4.34 and 6.21%, respectively, when using POM interlayers; this represents a 25-33% improvement as compared to the reference cells. Moreover, increased lifetime under ambient air and improved photostability under constant illumination were observed in POM-modified devices. Detailed analysis shows that the improvements in efficiency and stability synergistically stem from the reduced work function of TiO2 upon POM coverage, the improved nanomorphology of the photoactive blend, the reduced interfacial recombination losses, the superior electron transfer, and the more effective exciton dissociation at the photoactive layer/POM/TiO2 interfaces.

14.
ACS Appl Mater Interfaces ; 8(2): 1194-205, 2016 Jan 20.
Article in English | MEDLINE | ID: mdl-26696337

ABSTRACT

Modifications of the ZnO electron extraction layer with low-pressure H plasma treatment increased the efficiency of inverted polymer solar cells (PSCs) based on four different photoactive blends, namely, poly(3-hexylthiophene):[6,6]-phenyl C71 butyric acid methyl ester (P3HT:PC71BM), P3HT:1',1″,4',4″-tetrahydro-di[1,4]methanonaphthaleno-[5,6]ullerene-C60 (P3HT:IC60BA), poly[(9-(1-octylnonyl)-9H-carbazole-2,7-diyl)-2,5-thiophenediyl-2,1,3-benzothiadiazole-4,7-diyl-2,5-thiophenediyl]:PC71BM (PCDTBT:PC71BM), and (poly[[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl][3-fluoro-2-(2-ethylhexy)carbonyl]thieno[3,4-b]thiophenediyl]]):PC71BM (PTB7:PC71BM), irrespective of the donor:acceptor combination in the photoactive blend. The drastic improvement in device efficiency is dominantly attributable to the reduction in the work function of ZnO followed by a decreased energy barrier for electron extraction from fullerene acceptor. In addition, reduced recombination losses and improved nanomorphology of the photoactive blend in the devices with the H plasma treated ZnO layer were observed, whereas exciton dissociation also improved with hydrogen treatment. As a result, the inverted PSC consisting of the P3HT:PC71BM blend exhibited a high power conversion efficiency (PCE) of 4.4%, the one consisting of the P3HT:IC60BA blend exhibited a PCE of 6.6%, and our champion devices with the PCDTBT:PC71BM and PTB7:PC71BM blends reached high PCEs of 7.4 and 8.0%, respectively.

SELECTION OF CITATIONS
SEARCH DETAIL
...