Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 66
Filter
2.
Biomedicines ; 12(4)2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38672181

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) is a major public health issue worldwide. It is the most common liver disease in Western countries, andits global prevalence is estimated to be up to 35%. However, its diagnosis may be elusive, because liver biopsy is relatively rarely performed and usually only in advanced stages of the disease. Therefore, several non-invasive scores may be applied to more easily diagnose and monitor NAFLD. In this review, we discuss the various biomarkers and imaging scores that could be useful in diagnosing and managing NAFLD. Despite the fact that general measures, such as abstinence from alcohol and modulation of other cardiovascular disease risk factors, should be applied, the mainstay of prevention and management is weight loss. Bariatric surgery may be suggested as a means to confront NAFLD. In addition, pharmacological treatment with GLP-1 analogues or the GIP agonist tirzepatide may be advisable. In this review, we focus on the utility of GLP-1 analogues and GIP agonists in lowering body weight, their pharmaceutical potential, and their safety profile, as already evidenced inanimal and human studies. We also elaborate on other options, such as the use of vitamin E, probiotics, especially next-generation probiotics, and prebiotics in this context. Finally, we explore future perspectives regarding the administration of GLP-1 analogues, GIP agonists, and probiotics/prebiotics as a means to prevent and combat NAFLD. The newest drugs pegozafermin and resmetiron, which seem to be very promising, arealso discussed.

3.
Curr Nutr Rep ; 13(2): 152-165, 2024 06.
Article in English | MEDLINE | ID: mdl-38427291

ABSTRACT

PURPOSE OF REVIEW: Choline is an essential nutrient for human health and cellular homeostasis as it is necessary for the synthesis of lipid cell membranes, lipoproteins, and the synthesis of the neurotransmitter acetylcholine. The aim of this review is to analyze the beneficial effects of choline and its significance in cellular metabolism and various inflammatory pathways, such as the inflammasome. We will discuss the significance of dietary choline in cardiometabolic disorders, such as non-alcoholic fatty liver disease (NAFLD), cardiovascular disease (CVD), and chronic kidney disease (CKD) as well as in cognitive function and associated neuropsychiatric disorders. RECENT FINDINGS: Choline deficiency has been related to the development of NAFLD and cognitive disability in the offspring as well as in adulthood. In sharp contrast, excess dietary intake of choline mediated via the increased production of trimethylamine by the gut microbiota and increased trimethylamine-N-oxide (TMAO) levels has been related to atherosclerosis in most studies. In this context, CVD and CKD through the accumulation of TMAO, p-Cresyl-sulfate (pCS), and indoxyl-sulfate (IS) in serum may be the result of the interplay between excess dietary choline, the increased production of TMAO by the gut microbiota, and the resulting activation of inflammatory responses and fibrosis. A balanced diet, with no excess nor any deficiency in dietary choline, is of outmost importance regarding the prevention of cardiometabolic disorders as well as cognitive function. Large-scale studies with the use of next-generation probiotics, especially Akkermansia muciniphila and Faecalibacterium prausnitzii, should further examine their therapeutic potential in this context.


Subject(s)
Cardiovascular Diseases , Choline , Diet , Gastrointestinal Microbiome , Renal Insufficiency, Chronic , Humans , Cardiovascular Diseases/prevention & control , Non-alcoholic Fatty Liver Disease , Choline Deficiency/complications , Methylamines/metabolism
4.
Medicina (Kaunas) ; 60(3)2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38541160

ABSTRACT

Worldwide, sepsis is a well-recognized cause of death. Acute kidney injury (AKI) may be related to sepsis in up to 70% of AKI cases. Sepsis-associated AKI (SA-AKI) is defined as the presence of AKI according to the Kidney Disease: Improving Global Outcomes criteria in the context of sepsis. SA-AKI is categorized into early, which presents during the first 48 h of sepsis, and late, presenting between 48 h and 7 days of sepsis. SA-AKI is associated with a worse prognosis among patients with sepsis. However, there are different SA-AKI phenotypes as well as different pathophysiological pathways of SA-AKI. The aim of this review is to provide an updated synopsis of the pathogenetic mechanisms underlying the development of SA-AKI as well as to analyze its different phenotypes and prognosis. In addition, potential novel diagnostic and prognostic biomarkers as well as therapeutic approaches are discussed. A plethora of mechanisms are implicated in the pathogenesis of SA-AKI, including inflammation and metabolic reprogramming during sepsis; various types of cell death such as apoptosis, necroptosis, pyroptosis and ferroptosis; autophagy and efferocytosis; and hemodynamic changes (macrovascular and microvascular dysfunction). Apart from urine output and serum creatinine levels, which have been incorporated in the definition of AKI, several serum and urinary diagnostic and prognostic biomarkers have also been developed, comprising, among others, interleukins 6, 8 and 18, osteoprotegerin, galectin-3, presepsin, cystatin C, NGAL, proenkephalin A, CCL-14, TIMP-2 and L-FABP as well as biomarkers stemming from multi-omics technologies and machine learning algorithms. Interestingly, the presence of long non-coding RNAs (lncRNAs) as well as microRNAs (miRNAs), such as PlncRNA-1, miR-22-3p, miR-526b, LncRNA NKILA, miR-140-5p and miR-214, which are implicated in the pathogenesis of SA-AKI, may also serve as potential therapeutic targets. The combination of omics technologies represents an innovative holistic approach toward providing a more integrated view of the molecular and physiological events underlying SA-AKI as well as for deciphering unique and specific phenotypes. Although more evidence is still necessary, it is expected that the incorporation of integrative omics may be useful not only for the early diagnosis and risk prognosis of SA-AKI, but also for the development of potential therapeutic targets that could revolutionize the management of SA-AKI in a personalized manner.


Subject(s)
Acute Kidney Injury , MicroRNAs , Sepsis , Humans , Sepsis/diagnosis , Prognosis , Biomarkers , Peptide Fragments , Lipopolysaccharide Receptors
5.
Int J Mol Sci ; 25(6)2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38542510

ABSTRACT

Lipoprotein(a) [Lp(a)] consists of a low-density lipoprotein-like molecule and an apolipoprotein(a) [apo(a)] particle. Lp(a) has been suggested to be an independent risk factor of atherosclerotic cardiovascular disease (ASCVD). Lp(a) plasma levels are considered to be 70-90% genetically determined through the codominant expression of the LPA gene. Therefore, Lp(a) levels are almost stable during an individual's lifetime. This lifelong stability, together with the difficulties in measuring Lp(a) levels in a standardized manner, may account for the scarcity of available drugs targeting Lp(a). In this review, we synopsize the latest data regarding the structure, metabolism, and factors affecting circulating levels of Lp(a), as well as the laboratory determination measurement of Lp(a), its role in the pathogenesis of ASCVD and thrombosis, and the potential use of various therapeutic agents targeting Lp(a). In particular, we discuss novel agents, such as antisense oligonucleotides (ASOs) and small interfering RNAs (siRNAs) that are currently being developed and target Lp(a). The promising role of muvalaplin, an oral inhibitor of Lp(a) formation, is then further analyzed.


Subject(s)
Atherosclerosis , Cardiovascular Diseases , Humans , Lipoprotein(a)/genetics , Atherosclerosis/drug therapy , Risk Factors , Apoprotein(a) , Apolipoproteins A
6.
Biomolecules ; 14(3)2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38540711

ABSTRACT

Irisin, a novel adipo-myokine with metabolic regulatory functions, exerts anti-inflammatory, antioxidant, and anti-apoptotic actions that may confer protection against sepsis-induced organ injury in experimental studies. Until now, only one human study has explored circulating irisin at sepsis onset. We aimed to examine serum irisin and its kinetics in critically ill patients with sepsis and septic shock with regard to sepsis severity and outcome. We enrolled 102 critically ill patients with sepsis or septic shock within 48 h of diagnosis and 102 age- and gender-matched healthy controls. Irisin was determined in serum upon enrollment in all participants and one week later in patients using an immunoenzymatic method. The outcome of sepsis was recorded 28 days after enrollment. At enrollment, circulating irisin was significantly lower in patients than controls (22.3 ± 6.8 µg/L vs. 28.1 ± 6.7 µg/L, p < 0.001), and increased significantly one week later (22.3 ± 6.8 µg/L vs. 26.6 ± 9.5 µg/L, p < 0.001). Irisin was significantly lower in patients who presented with septic shock than those with sepsis, and in non-survivors than survivors both at enrollment and one week later. However, kinetics of irisin did not differ between the groups (p > 0.05). Patients with higher circulating irisin during the first week of sepsis had a better outcome (p < 0.001). Lower irisin was independently associated with 28-day mortality (sepsis onset: HR 0.44, 95% C.I. 0.26-0.77, p = 0.004 and one week after: HR 0.37, 95% C.I. 0.23-0.58, p < 0.001). Irisin was negatively correlated with severity scores, metabolic, and inflammatory biomarkers. Circulating irisin decreases early in sepsis and is an independent predictor of 28-day mortality. Irisin may be a promising diagnostic and prognostic sepsis biomarker; nevertheless, larger studies are needed to explore its role in sepsis.


Subject(s)
Sepsis , Shock, Septic , Humans , Shock, Septic/diagnosis , Fibronectins , Myokines , Prognosis , Critical Illness , Sepsis/diagnosis , Biomarkers
7.
Diab Vasc Dis Res ; 21(1): 14791641231223701, 2024.
Article in English | MEDLINE | ID: mdl-38305220

ABSTRACT

PURPOSE: Low values of bioimpedance-derived phase angle (PA) have been associated with various adverse outcomes. We investigated the association of PA with cardiovascular markers in individuals with and without diabetes mellitus (DM). METHODS: PA was measured in 452 adults (without DM n = 153, T1DM n = 67, T2DM n = 232). Carotid intima-media thickness (IMT), renal resistive index (RRI), ankle-brachial index (ABI) and carotid-femoral Pulse Wave Velocity (cfPWV) were estimated. Furthermore, the levels of high-sensitive Troponin-T [hsTnT], N-terminal brain natriuretic peptide [NT-pro-BNP]) were measured. RESULTS: PA values were lower in DM independently of age, gender, and BMI (estimated marginal means 6.21, 5.83, 5.95 for controls, T1DM, T2DM p < .05), a finding which persisted after propensity score matching. PA correlated negatively with IMT (r = -0.181), RRI (r = -0.374), cfPWV (r = -0.358), hsTnT (r = -0.238) and NT-pro-BNP (r = -0.318) (all p < .001). In multivariable analysis, the associations with RRI, cfPWV, hsTnT and NT-pro-BNP remained unchanged. PA values 6.0-6.5° for males and 5.2-5.8° for females were predictive of commonly used cutoffs. The combination of ΑCC/AHA ASCVD Score with PA outperformed either factor in predicting cfPWV, RRI for males and hsTnT, BNP for both genders. CONCLUSIONS: PA exhibits independent correlations with various parameters pertinent to cardiovascular risk and may be useful for cardiovascular assessment.


Subject(s)
Cardiovascular Diseases , Diabetes Mellitus, Type 1 , Diabetes Mellitus, Type 2 , Adult , Humans , Male , Female , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/etiology , Carotid Intima-Media Thickness , Pulse Wave Analysis , Risk Factors , Heart Disease Risk Factors , Natriuretic Peptide, Brain , Peptide Fragments , Biomarkers
8.
Metabolism ; 152: 155773, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38181882

ABSTRACT

BACKGROUND: Bariatric surgery has long-term beneficial effects on body weight and metabolic status, but there is an apparent lack of comprehensive cardiometabolic, renal, liver, and metabolomic/lipidomic panels, whereas the underlying mechanisms driving the observed postoperative ameliorations are still poorly investigated. We aimed to study the long-term effects of bariatric surgery on metabolic profile, cardiorenal and liver outcomes in association with underlying postoperative gut hormone adaptations. METHODS: 28 individuals who underwent bariatric surgery [17 sleeve gastrectomy (SG), 11 Roux-en-Y gastric bypass (RYGB)] were followed up 3, 6 and 12 and at 10 years following surgery. Participants at 10 years were cross-sectionally compared with an age-, sex- and adiposity-matched group of non-operated individuals (n = 9) and an age-matched pilot group of normal-weight individuals (n = 4). RESULTS: There were durable effects of surgery on body weight and composition, with an increase of lean mass percentage persisting despite some weight regain 10 years postoperatively. The improvements in metabolic and lipoprotein profiles, cardiometabolic risk markers, echocardiographic and cardiorenal outcomes persisted over the ten-year observation period. The robust improvements in insulin resistance, adipokines, activin/follistatin components and postprandial gastrointestinal peptide levels persisted 10 years postoperatively. These effects were largely independent of surgery type, except for a lasting reduction of ghrelin in the SG subgroup, and more pronounced increases in proglucagon products, mainly glicentin and oxyntomodulin, and in the cardiovascular risk marker Trimethylamine-N-oxide (TMAO) within the RYGB subgroup. Despite similar demographic and clinical features, participants 10 years after surgery showed a more favorable metabolic profile compared with the control group, in conjunction with a dramatic increase of postprandial proglucagon product secretion. CONCLUSIONS: We demonstrate that cardiorenal and metabolic benefits of bariatric surgery remain robust and largely unchanged ten years postoperatively and are associated with durable effects on gastrointestinal- muscle- and adipose tissue-secreted hormones. TRIAL REGISTRATION: ClinicalTrials.gov: NCT04170010.


Subject(s)
Bariatric Surgery , Cardiovascular Diseases , Gastric Bypass , Gastrointestinal Hormones , Obesity, Morbid , Humans , Case-Control Studies , Proglucagon , Obesity/surgery , Liver , Cardiovascular Diseases/prevention & control , Gastrectomy , Obesity, Morbid/surgery
9.
Article in English | MEDLINE | ID: mdl-38215056

ABSTRACT

CONTEXT: Due to the heterogenous clinical symptoms and deficits, the diagnosis of diabetic polyneuropathy (DPN) is still difficult in clinical routine leading to increased morbidity and mortality. OBJECTIVE: We studied the correlation of phase angle (PhA) of bioelectrical impedance analysis (BIA) with clinical, laboratory and physical markers of DPN to evaluate PhA as possible diagnostic method for DPN. MATERIALS AND METHODS: In this cross-sectional observational study as part of the Heidelberg Study on Diabetes and Complications we examined 104 healthy individuals and 205 patients with type 2 diabetes mellitus (T2D), amongst which 63 had DPN. The PhA was calculated from multi-frequency BIA. Nerve conduction studies (NCS), quantitative sensory testing (QST) and diffusion-weighted magnetic resonance neurography (MRN) to determine fractional anisotropy (FA) reflecting peripheral nerve integrity were performed. RESULTS: T2D patients with DPN had lower PhA values (5.71 ± 0.10) compared to T2D patients without DPN (6.07 ± 0.08, p = 0.007, + 6.1%) and healthy controls (6.18 ± 0.08, p < 0.001, + 7.9%). Confounder-adjusted analyses showed correlations of the PhA with conduction velocities and amplitudes of the peroneal (ß=0.28; ß=0.31, p < 0.001) and tibial nerves (ß=0.28; ß=0.32, p < 0.001), Z-scores of QST (thermal detection ß=0.30, p < 0.05) and the FA (ß=0.60, p < 0.001). ROC analysis showed similar performance of PhA in comparison to mentioned diagnostic methods. CONCLUSION: The study shows that PhA is in comparison to other test systems used, at least an equally good and much easier to handle, investigator independent marker for detection of DPN.

10.
Eur Radiol Exp ; 8(1): 6, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38191821

ABSTRACT

BACKGROUND: Previous studies on magnetic resonance neurography (MRN) found different patterns of structural nerve damage in type 1 diabetes (T1D) and type 2 diabetes (T2D). Magnetization transfer ratio (MTR) is a quantitative technique to analyze the macromolecular tissue composition. We compared MTR values of the sciatic nerve in patients with T1D, T2D, and healthy controls (HC). METHODS: 3-T MRN of the right sciatic nerve at thigh level was performed in 14 HC, 10 patients with T1D (3 with diabetic neuropathy), and 28 patients with T2D (10 with diabetic neuropathy). Results were subsequently correlated with clinical and electrophysiological data. RESULTS: The sciatic nerve's MTR was lower in patients with T2D (0.211 ± 0.07, mean ± standard deviation) compared to patients with T1D (T1D 0.285 ± 0.03; p = 0.015) and HC (0.269 ± 0.05; p = 0.039). In patients with T1D, sciatic MTR correlated positively with tibial nerve conduction velocity (NCV; r = 0.71; p = 0.021) and negatively with hemoglobin A1c (r = - 0.63; p < 0.050). In patients with T2D, we found negative correlations of sciatic nerve's MTR peroneal NCV (r = - 0.44; p = 0.031) which remained significant after partial correlation analysis controlled for age and body mass index (r = 0.51; p = 0.016). CONCLUSIONS: Lower MTR values of the sciatic nerve in T2D compared to T1D and HC and diametrical correlations of MTR values with NCV in T1D and T2D indicate that there are different macromolecular changes and pathophysiological pathways underlying the development of neuropathic nerve damage in T1D and T2D. TRIAL REGISTRATION: https://classic. CLINICALTRIALS: gov/ct2/show/NCT03022721 . 16 January 2017. RELEVANCE STATEMENT: Magnetization transfer ratio imaging may serve as a non-invasive imaging method to monitor the diseases progress and to encode the pathophysiology of nerve damage in patients with type 1 and type 2 diabetes. KEY POINTS: • Magnetization transfer imaging detects distinct macromolecular nerve lesion patterns in diabetes patients. • Magnetization transfer ratio was lower in type 2 diabetes compared to type 1 diabetes. • Different pathophysiological mechanisms drive nerve damage in type 1 and 2 diabetes.


Subject(s)
Diabetes Mellitus, Type 1 , Diabetes Mellitus, Type 2 , Diabetic Neuropathies , Humans , Diabetes Mellitus, Type 2/diagnostic imaging , Diabetes Mellitus, Type 1/diagnostic imaging , Diabetic Neuropathies/diagnostic imaging , Sciatic Nerve/diagnostic imaging , Thigh
11.
Int J Mol Sci ; 25(1)2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38203845

ABSTRACT

Excess body weight constitutes one of the major health challenges for societies and healthcare systems worldwide. Besides the type of diet, calorie intake and the lack of physical exercise, recent data have highlighted a possible association between endocrine-disrupting chemicals (EDCs), such as bisphenol A, phthalates and their analogs, and obesity. EDCs represent a heterogeneous group of chemicals that may influence the hormonal regulation of body mass and adipose tissue morphology. Based on the available data from mechanistic, animal and epidemiological studies including meta-analyses, the weight of evidence points towards the contribution of EDCs to the development of obesity, associated disorders and obesity-related adipose tissue dysfunction by (1) impacting adipogenesis; (2) modulating epigenetic pathways during development, enhancing susceptibility to obesity; (3) influencing neuroendocrine signals responsible for appetite and satiety; (4) promoting a proinflammatory milieu in adipose tissue and inducing a state of chronic subclinical inflammation; (5) dysregulating gut microbiome and immune homeostasis; and (6) inducing dysfunction in thermogenic adipose tissue. Critical periods of exposure to obesogenic EDCs are the prenatal, neonatal, pubertal and reproductive periods. Interestingly, EDCs even at low doses may promote epigenetic transgenerational inheritance of adult obesity in subsequent generations. The aim of this review is to summarize the available evidence on the role of obesogenic EDCs, specifically BPA and phthalate plasticizers, in the development of obesity, taking into account in vitro, animal and epidemiologic studies; discuss mechanisms linking EDCs to obesity; analyze the effects of EDCs on obesity in critical chronic periods of exposure; and present interesting perspectives, challenges and preventive measures in this research area.


Subject(s)
Benzhydryl Compounds , Endocrine Disruptors , Phenols , Phthalic Acids , Animals , Female , Pregnancy , Endocrine Disruptors/toxicity , Obesity/chemically induced , Weight Gain , Humans
12.
Clin Neuroradiol ; 34(1): 55-66, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37548682

ABSTRACT

INTRODUCTION/AIMS: Diabetic small fiber neuropathy (SFN) is caused by damage to thinly myelinated A­fibers (δ) and unmyelinated C­fibers. This study aimed to assess associations between quantitative sensory testing (QST) and parameters of peripheral nerve perfusion obtained from dynamic contrast enhanced (DCE) magnetic resonance neurography (MRN) in type 2 diabetes patients with and without SFN. METHODS: A total of 18 patients with type 2 diabetes (T2D, 8 with SFN, 10 without SFN) and 10 healthy controls (HC) took part in this cross-sectional single-center study and underwent QST of the right leg and DCE-MRN of the right thigh with subsequent calculation of the sciatic nerve constant of capillary permeability (Ktrans), extravascular extracellular volume fraction (Ve), and plasma volume fraction (Vp). RESULTS: The Ktrans (HC 0.031 min-1 ± 0.009, T2D 0.043 min-1 ± 0.015; p = 0.033) and Ve (HC 1.2% ± 1.5, T2D: 4.1% ± 5.1; p = 0.027) were lower in T2D patients compared to controls. In T2D patients, compound z­scores of thermal and mechanical detection correlated with Ktrans (r = 0.73; p = 0.001, and r = 0.57; p = 0.018, respectively) and Ve (r = 0.67; p = 0.002, and r = 0.69; p = 0.003, respectively). Compound z­scores of thermal pain and Vp (r = -0.57; p = 0.015) correlated negatively. DISCUSSION: The findings suggest that parameters of peripheral nerve microcirculation are related to different symptoms in SFN: A reduced capillary permeability may result in a loss of function related to insufficient nutritional supply, whereas increased capillary permeability may be accompanied by painful symptoms related to a gain of function.


Subject(s)
Diabetes Mellitus, Type 2 , Humans , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/pathology , Cross-Sectional Studies , Pain/complications , Sciatic Nerve , Perfusion , Magnetic Resonance Spectroscopy , Magnetic Resonance Imaging
13.
Metabolism ; 151: 155741, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37995806

ABSTRACT

Currently, metabolic surgery (MS) constitutes the most effective means for durable weight loss of clinically meaningful magnitude, type 2 diabetes remission and resolution of non-alcoholic steatohepatitis, as well as other obesity-related comorbidities. Accumulating evidence on the mechanisms through which MS exerts its actions has highlighted the altered secretion of hormonally active peptides of intestinal origin with biological actions crucial to energy metabolism as key drivers of MS clinical effects. The initial success of glucagon-like peptide-1 (GLP-1) receptor agonists regarding weight loss and metabolic amelioration have been followed by the development of unimolecular dual and triple polyagonists, additionally exploiting the effects of glucagon and/or glucose-dependent insulinotropic polypeptide (GIP) which achieves a magnitude of weight loss approximating that of common MS operations. Through the implementation of such therapies, the feasibility of a "medical bypass", namely the replication of the clinical effects of MS through non-surgical interventions may be foreseeable in the near future. Apart from weight loss, this approach ought to be put to the test also regarding other clinical outcomes, such as liver steatosis and steatohepatitis, cardiovascular disease, and overall prognosis, on which MS has a robustly demonstrated impact. Besides, a medical bypass as an alternative, salvage, or combination strategy to MS may promote precision medicine in obesity therapeutics.


Subject(s)
Bariatric Surgery , Diabetes Mellitus, Type 2 , Fatty Liver , Humans , Glucagon-Like Peptide 1/metabolism , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/surgery , Diabetes Mellitus, Type 2/metabolism , Obesity/complications , Obesity/drug therapy , Obesity/surgery , Gastric Inhibitory Polypeptide/therapeutic use , Fatty Liver/drug therapy , Weight Loss , Glucagon-Like Peptide-1 Receptor
14.
Diabetes ; 73(1): 135-146, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37862374

ABSTRACT

We aimed to investigate the characteristics and longitudinal course of sensory phenotypes identified through quantitative sensory testing (QST) in the frame of diabetic sensorimotor polyneuropathy (DSPN). A total of 316 individuals with diabetes were examined (type 2 diabetes 78.8%), 250 of whom were undergoing follow-up visits at 1, 2, and/or 4 (2.88 ± 1.27) years. Allocation into four sensory phenotypes (healthy, thermal hyperalgesia [TH], mechanical hyperalgesia [MH], and sensory loss [SL]) at every time point was based on QST profiles of the right foot. Cross-sectional analysis demonstrated a gradual worsening of clinical and electrophysiological sensory findings and increased DSPN prevalence across the groups, culminating in SL. Motor nerve impairment was observed solely in the SL group. Longitudinal analysis revealed a distinct pattern in the developmental course of the phenotype (from healthy to TH, MH, and finally SL). Those with baseline MH exhibited the highest risk of transition to SL. Reversion to healthy status was uncommon and mostly observed in the TH group. Among those without DSPN initially, presence or future occurrence of SL was associated with a three- to fivefold higher likelihood of DSPN development. Our comprehensive longitudinal study of phenotyped patients with diabetes elucidates the natural course of DSPN. QST-based sensory examination together with other tools for phenotyping may be useful in determining the natural course of diabetic neuropathy to identify patients at high risk of DSPN and guide preventive and therapeutic interventions. ARTICLE HIGHLIGHTS: The course of diabetic sensorimotor polyneuropathy (DSPN) development, from healthy status to overt DSPN, is poorly understood. We studied the characteristics and longitudinal appearance of lower-extremity sensory phenotypes (healthy, thermal hyperalgesia [TH], mechanical hyperalgesia [MH], and sensory loss [SL]) identified through quantitative sensory testing in individuals with diabetes. There was an increasing severity and patterned order of longitudinal appearance across healthy, TH, MH, and SL phenotypes. SL was most strongly associated with formal DSPN. Our findings provide insight into the natural history of DSPN. Sensory phenotyping can be implemented to identify high-risk individuals and those most likely to benefit from therapeutic interventions.


Subject(s)
Diabetes Mellitus, Type 2 , Diabetic Neuropathies , Polyneuropathies , Humans , Diabetes Mellitus, Type 2/complications , Hyperalgesia/complications , Longitudinal Studies , Cross-Sectional Studies , Polyneuropathies/etiology , Phenotype
15.
Diabetologia ; 67(2): 275-289, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38019287

ABSTRACT

AIMS/HYPOTHESIS: Quantitative sensory testing (QST) allows the identification of individuals with rapid progression of diabetic sensorimotor polyneuropathy (DSPN) based on certain sensory phenotypes. Hence, the aim of this study was to investigate the relationship of these phenotypes with the structural integrity of the sciatic nerve among individuals with type 2 diabetes. METHODS: Seventy-six individuals with type 2 diabetes took part in this cross-sectional study and underwent QST of the right foot and high-resolution magnetic resonance neurography including diffusion tensor imaging of the right distal sciatic nerve to determine the sciatic nerve fractional anisotropy (FA) and cross-sectional area (CSA), both of which serve as markers of structural integrity of peripheral nerves. Participants were then assigned to four sensory phenotypes (participants with type 2 diabetes and healthy sensory profile [HSP], thermal hyperalgesia [TH], mechanical hyperalgesia [MH], sensory loss [SL]) by a standardised sorting algorithm based on QST. RESULTS: Objective neurological deficits showed a gradual increase across HSP, TH, MH and SL groups, being higher in MH compared with HSP and in SL compared with HSP and TH. The number of participants categorised as HSP, TH, MH and SL was 16, 24, 17 and 19, respectively. There was a gradual decrease of the sciatic nerve's FA (HSP 0.444, TH 0.437, MH 0.395, SL 0.382; p=0.005) and increase of CSA (HSP 21.7, TH 21.5, MH 25.9, SL 25.8 mm2; p=0.011) across the four phenotypes. Further, MH and SL were associated with a lower sciatic FA (MH unstandardised regression coefficient [B]=-0.048 [95% CI -0.091, -0.006], p=0.027; SL B=-0.062 [95% CI -0.103, -0.020], p=0.004) and CSA (MH ß=4.3 [95% CI 0.5, 8.0], p=0.028; SL B=4.0 [95% CI 0.4, 7.7], p=0.032) in a multivariable regression analysis. The sciatic FA correlated negatively with the sciatic CSA (r=-0.35, p=0.002) and markers of microvascular damage (high-sensitivity troponin T, urine albumin/creatinine ratio). CONCLUSIONS/INTERPRETATION: The most severe sensory phenotypes of DSPN (MH and SL) showed diminishing sciatic nerve structural integrity indexed by lower FA, likely representing progressive axonal loss, as well as increasing CSA of the sciatic nerve, which cannot be detected in individuals with TH. Individuals with type 2 diabetes may experience a predefined cascade of nerve fibre damage in the course of the disease, from healthy to TH, to MH and finally SL, while structural changes in the proximal nerve seem to precede the sensory loss of peripheral nerves and indicate potential targets for the prevention of end-stage DSPN. TRIAL REGISTRATION: ClinicalTrials.gov NCT03022721.


Subject(s)
Diabetes Mellitus, Type 2 , Diabetic Neuropathies , Humans , Diffusion Tensor Imaging/methods , Cross-Sectional Studies , Sciatic Nerve , Phenotype
16.
Curr Obes Rep ; 13(1): 1-34, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38159164

ABSTRACT

PURPOSE OF REVIEW: To examine the epidemiological data on obesity and leukemia; evaluate the effect of obesity on leukemia outcomes in childhood acute lymphoblastic leukemia (ALL) survivors; assess the potential mechanisms through which obesity may increase the risk of leukemia; and provide the effects of obesity management on leukemia. Preventive (diet, physical exercise, obesity pharmacotherapy, bariatric surgery) measures, repurposing drugs, candidate therapeutic agents targeting oncogenic pathways of obesity and insulin resistance in leukemia as well as challenges of the COVID-19 pandemic are also discussed. RECENT FINDINGS: Obesity has been implicated in the development of 13 cancers, such as breast, endometrial, colon, renal, esophageal cancers, and multiple myeloma. Leukemia is estimated to account for approximately 2.5% and 3.1% of all new cancer incidence and mortality, respectively, while it represents the most frequent cancer in children younger than 5 years. Current evidence indicates that obesity may have an impact on the risk of leukemia. Increased birthweight may be associated with the development of childhood leukemia. Obesity is also associated with worse outcomes and increased mortality in leukemic patients. However, there are several limitations and challenges in meta-analyses and epidemiological studies. In addition, weight gain may occur in a substantial number of childhood ALL survivors while the majority of studies have documented an increased risk of relapse and mortality among patients with childhood ALL and obesity. The main pathophysiological pathways linking obesity to leukemia include bone marrow adipose tissue; hormones such as insulin and the insulin-like growth factor system as well as sex hormones; pro-inflammatory cytokines, such as IL-6 and TNF-α; adipocytokines, such as adiponectin, leptin, resistin, and visfatin; dyslipidemia and lipid signaling; chronic low-grade inflammation and oxidative stress; and other emerging mechanisms. Obesity represents a risk factor for leukemia, being among the only known risk factors that could be prevented or modified through weight loss, healthy diet, and physical exercise. Pharmacological interventions, repurposing drugs used for cardiometabolic comorbidities, and bariatric surgery may be recommended for leukemia and obesity-related cancer prevention.


Subject(s)
Pandemics , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Child , Humans , Obesity/complications , Obesity/epidemiology , Leptin , Risk Factors , Adipokines , Precursor Cell Lymphoblastic Leukemia-Lymphoma/epidemiology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/complications
17.
J Clin Endocrinol Metab ; 109(1): e137-e144, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-37579325

ABSTRACT

CONTEXT: Insulin-mediated microvascular permeability and blood flow of skeletal muscle appears to be altered in the condition of insulin resistance. Previous studies on this effect used invasive procedures in humans or animals. OBJECTIVE: The aim of this study was to demonstrate the feasibility of a noninvasive assessment of human muscle microcirculation via dynamic contrast-enhanced (DCE)-magnetic resonance imaging (MRI) of skeletal muscle in patients with type 2 diabetes (T2D). METHODS: A total of 56 participants (46 with T2D, 10 healthy controls [HC]) underwent DCE-MRI of the right thigh at 3 Tesla. The constant of the musculature's microvascular permeability (Ktrans), extravascular extracellular volume fraction (ve), and plasma volume fraction (vp) were calculated. RESULTS: In T2D patients, skeletal muscle Ktrans was lower (HC 0.0677 ± 0.002 min-1, T2D 0.0664 ± 0.002 min-1; P = 0.042) while the homeostasis model assessment (HOMA) index was higher in patients with T2D compared to HC (HC 2.72 ± 2.2, T2D 6.11 ± 6.2; P = .011). In T2D, Ktrans correlated negatively with insulin (r = -0.39, P = .018) and HOMA index (r = -0.38, P = .020). CONCLUSION: The results signify that skeletal muscle DCE-MRI can be employed as a noninvasive technique for the assessment of muscle microcirculation in T2D. Our findings suggest that microvascular permeability of skeletal muscle is lowered in patients with T2D and that a decrease in microvascular permeability is associated with insulin resistance. These results are of interest with regard to the impact of muscle perfusion on diabetic complications such as diabetic sarcopenia.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Insulins , Humans , Capillary Permeability , Contrast Media , Magnetic Resonance Imaging/methods , Muscle, Skeletal/diagnostic imaging , Thigh
18.
Int J Mol Sci ; 24(13)2023 Jun 21.
Article in English | MEDLINE | ID: mdl-37445634

ABSTRACT

Long COVID (LC) encompasses a constellation of long-term symptoms experienced by at least 10% of people after the initial SARS-CoV-2 infection, and so far it has affected about 65 million people. The etiology of LC remains unclear; however, many pathophysiological pathways may be involved, including viral persistence; a chronic, low-grade inflammatory response; immune dysregulation and a defective immune response; the reactivation of latent viruses; autoimmunity; persistent endothelial dysfunction and coagulopathy; gut dysbiosis; hormonal and metabolic dysregulation; mitochondrial dysfunction; and autonomic nervous system dysfunction. There are no specific tests for the diagnosis of LC, and clinical features including laboratory findings and biomarkers may not specifically relate to LC. Therefore, it is of paramount importance to develop and validate biomarkers that can be employed for the prediction, diagnosis and prognosis of LC and its therapeutic response, although this effort may be hampered by challenges pertaining to the non-specific nature of the majority of clinical manifestations in the LC spectrum, small sample sizes of relevant studies and other methodological issues. Promising candidate biomarkers that are found in some patients are markers of systemic inflammation, including acute phase proteins, cytokines and chemokines; biomarkers reflecting SARS-CoV-2 persistence, the reactivation of herpesviruses and immune dysregulation; biomarkers of endotheliopathy, coagulation and fibrinolysis; microbiota alterations; diverse proteins and metabolites; hormonal and metabolic biomarkers; and cerebrospinal fluid biomarkers. At present, there are only two reviews summarizing relevant biomarkers; however, they do not cover the entire umbrella of current biomarkers, their link to etiopathogenetic mechanisms or the diagnostic work-up in a comprehensive manner. Herein, we aim to appraise and synopsize the available evidence on the typical laboratory manifestations and candidate biomarkers of LC, their classification based on pathogenetic mechanisms and the main LC symptomatology in the frame of the epidemiological and clinical aspects of the syndrome and furthermore assess limitations and challenges as well as potential implications in candidate therapeutic interventions.


Subject(s)
COVID-19 , Post-Acute COVID-19 Syndrome , Humans , COVID-19/diagnosis , COVID-19/epidemiology , SARS-CoV-2 , Acute-Phase Proteins , Biomarkers , Inflammation
19.
Medicina (Kaunas) ; 59(5)2023 Apr 24.
Article in English | MEDLINE | ID: mdl-37241065

ABSTRACT

Background and Objectives: Omentin-1, also known as intelectin-1, is a novel adipokine with anti-inflammatory activities implicated in inflammatory diseases and sepsis. We aimed to explore serum omentin-1 and its kinetics in critically ill patients early in sepsis and its association with severity and prognosis. Materials and Methods: Serum omentin-1 was determined in 102 critically ill patients with sepsis during the first 48 h from sepsis onset and 1 week later, and in 102 age- and gender-matched healthy controls. The outcome of sepsis at 28 days after enrollment was recorded. Results: Serum omentin-1 at enrollment was significantly higher in patients compared to controls (763.3 ± 249.3 vs. 451.7 ± 122.3 µg/L, p < 0.001) and it further increased 1 week after (950.6 ± 215.5 vs. 763.3 ± 249.3 µg/L, p < 0.001). Patients with septic shock (n = 42) had higher omentin-1 compared to those with sepsis (n = 60) at enrollment (877.9 ± 241.2 vs. 683.1 ± 223.7 µg/L, p < 0.001) and 1 week after (1020.4 ± 224.7 vs. 901.7 ± 196.3 µg/L, p = 0.007). Furthermore, nonsurvivors (n = 30) had higher omentin-1 at sepsis onset (952.1 ± 248.2 vs. 684.6 ± 204.7 µg/L, p < 0.001) and 1 week after (1051.8 ± 242 vs. 908.4 ± 189.8 µg/L, p < 0.01). Patients with sepsis and survivors presented higher kinetics than those with septic shock and nonsurvivors (Δ(omentin-1)% 39.8 ± 35.9% vs. 20.2 ± 23.3%, p = 0.01, and 39.4 ± 34.3% vs. 13.3 ± 18.1%, p < 0.001, respectively). Higher omentin-1 at sepsis onset and 1 week after was an independent predictor of 28-day mortality (HR 2.26, 95% C.I. 1.21-4.19, p = 0.01 and HR: 2.15, 95% C.I. 1.43-3.22, p < 0.001, respectively). Finally, omentin-1 was significantly correlated with the severity scores, the white blood cells, coagulation biomarkers, and CRP, but not procalcitonin and other inflammatory biomarkers. Conclusions: Serum omentin-1 is increased in sepsis, while higher levels and lower kinetics during the first week of sepsis are associated with the severity and 28-day mortality of sepsis. Omentin-1 may be a promising biomarker of sepsis. However, more studies are needed to explore its role in sepsis.


Subject(s)
Sepsis , Shock, Septic , Humans , Prognosis , Prospective Studies , Critical Illness , Biomarkers
20.
Front Endocrinol (Lausanne) ; 14: 1143799, 2023.
Article in English | MEDLINE | ID: mdl-37251671

ABSTRACT

Background and aim: Current strategies for preventing diabetic sensorimotor polyneuropathy (DSPN) are limited mainly to glucose control but rapid decrease of glycemia can lead to acute onset or worsening of DSPN. The aim of this study was to examine the effects of periodic fasting on somatosensory nerve function in patients with type 2 diabetes (T2D). Study design and methods: Somatosensory nerve function was assessed in thirty-one patients with T2D (HbA1c 7.8 ± 1.3% [61.4 ± 14.3 mmol/mol]) before and after a six-month fasting-mimicking diet (FMD; n=14) or a control Mediterranean diet (M-diet; n=17). Neuropathy disability score (NDS), neuropathy symptoms score (NSS), nerve conduction velocity and quantitative sensory testing (QST) were analyzed. 6 participants of the M-Diet group and 7 of the FMD group underwent diffusion-weighted high-resolution magnetic resonance neurography (MRN) of the right leg before and after the diet intervention. Results: Clinical neuropathy scores did not differ between study groups at baseline (64% in the M-Diet group and 47% in the FMD group had DSPN) and no change was found after intervention. The differences in sensory NCV and sensory nerve action potential (SNAP) of sural nerve were comparable between study groups. Motor NCV of tibial nerve decreased by 12% in the M-Diet group (P=0.04), but did not change in the FMD group (P=0.39). Compound motor action potential (CMAP) of tibial nerve did not change in M-Diet group (P=0.8) and increased in the FMD group by 18% (P=0.02). Motor NCV and CMAP of peroneal nerve remained unchanged in both groups. In QST M-diet-group showed a decrease by 45% in heat pain threshold (P=0.02), FMD group showed no change (P=0.50). Changes in thermal detection, mechanical detection and mechanical pain did not differ between groups. MRN analysis showed stable fascicular nerve lesions irrespective of the degree of structural pathology. Fractional anisotropy and T2-time did not change in both study groups, while a correlation with the clinical degree of DSPN could be confirmed for both. Conclusions: Our study shows that six-month periodic fasting was safe in preserving nerve function and had no detrimental effects on somatosensory nerve function in T2D patients. Clinical trial registration: https://drks.de/search/en/trial/DRKS00014287, identifier DRKS00014287.


Subject(s)
Diabetes Mellitus, Type 2 , Diabetic Neuropathies , Humans , Action Potentials , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/pathology , Diabetic Neuropathies/diagnosis , Fasting , Pain
SELECTION OF CITATIONS
SEARCH DETAIL
...