Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Philos Trans A Math Phys Eng Sci ; 364(1841): 845-56, 2006 Apr 15.
Article in English | MEDLINE | ID: mdl-16537143

ABSTRACT

The thermosteric contribution of the North Atlantic Oscillation (NAO) to the North Sea sea-level for the winter period is investigated. Satellite sea surface temperature as well as in situ measurements are used to define the sensitivity of winter water temperature to the NAO as well as to determine the trends in temperature. The sea surface temperature sensitivity to the NAO is about 0.85 degrees C per unit NAO, which results in thermosteric sea-level changes of about 1-2 cm per unit NAO. The sensitivity of sea surface temperatures to the NAO is strongly time-dependent. Model data from a two-dimensional hydrodynamic tide+surge model are used in combination with the estimated thermosteric anomalies to explain the observed sea-level changes and, in particular, the sensitivity of the datasets to the NAO variability. The agreement between the model and the observed data is improved by the inclusion of the thermosteric effect.


Subject(s)
Models, Theoretical , Seasons , Seawater , Temperature , Atlantic Ocean , Europe , Linear Models , Oceanography/methods , Statistics as Topic
2.
Philos Trans A Math Phys Eng Sci ; 363(1831): 1329-58, 2005 Jun 15.
Article in English | MEDLINE | ID: mdl-16191653

ABSTRACT

Within the framework of a Tyndall Centre research project, sea level and wave changes around the UK and in the North Sea have been analysed. This paper integrates the results of this project. Many aspects of the contribution of the North Atlantic Oscillation (NAO) to sea level and wave height have been resolved. The NAO is a major forcing parameter for sea-level variability. Strong positive response to increasing NAO was observed in the shallow parts of the North Sea, while slightly negative response was found in the southwest part of the UK. The cause of the strong positive response is mainly the increased westerly winds. The NAO increase during the last decades has affected both the mean sea level and the extreme sea levels in the North Sea. The derived spatial distribution of the NAO-related variability of sea level allows the development of scenarios for future sea level and wave height in the region. Because the response of sea level to the NAO is found to be variable in time across all frequency bands, there is some inherent uncertainty in the use of the empirical relationships to develop scenarios of future sea level. Nevertheless, as it remains uncertain whether the multi-decadal NAO variability is related to climate change, the use of the empirical relationships in developing scenarios is justified. The resulting scenarios demonstrate: (i) that the use of regional estimates of sea level increase the projected range of sea-level change by 50% and (ii) that the contribution of the NAO to winter sea-level variability increases the range of uncertainty by a further 10-20cm. On the assumption that the general circulation models have some skill in simulating the future NAO change, then the NAO contribution to sea-level change around the UK is expected to be very small (<4cm) by 2080. Wave heights are also sensitive to the NAO changes, especially in the western coasts of the UK. Under the same scenarios for future NAO changes, the projected significant wave-height changes in the northeast Atlantic will exceed 0.4m. In addition, wave-direction changes of around 20 degrees per unit NAO index have been documented for one location. Such changes raise the possibility of consequential alteration of coastal erosion.


Subject(s)
Climate , Disaster Planning/methods , Disasters , Models, Statistical , Oceanography/methods , Rheology/methods , Risk Assessment/methods , Computer Simulation , Europe , North Sea , Risk Factors , United Kingdom
SELECTION OF CITATIONS
SEARCH DETAIL
...