Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
Add more filters










Publication year range
1.
Curr Vasc Pharmacol ; 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38693745

ABSTRACT

BACKGROUND: Studies on the early retinal changes in Diabetic Retinopathy (DR) have demonstrated that neurodegeneration precedes vascular abnormalities like microaneurysms or intraretinal hemorrhages. Therefore, there is a growing field of study to analyze the cellular and molecular pathways involved to allow for the development of novel therapeutics to prevent the onset or delay the progression of DR. Molecular Mechanisms: Oxidative stress and mitochondrial dysfunction contribute to neurodegeneration through pathways involving polyol, hexosamine, advanced glycation end products, and protein kinase C. Potential interventions targeting these pathways include aldose reductase inhibitors and protein kinase C inhibitors. Neurotrophic factor imbalances, notably brain-derived neurotrophic factor and nerve growth factor, also play a role in early neurodegeneration, and supplementation of these neurotrophic factors show promise in mitigating neurodegeneration. Cellular Mechanisms: Major cellular mechanisms of neurodegeneration include caspase-mediated apoptosis, glial cell reactivity, and glutamate excitotoxicity. Therefore, inhibitors of these pathways are potential therapeutic avenues. Vascular Component: The nitric oxide pathway, critical for neurovascular coupling, is disrupted in DR due to increased reactive oxygen species. Vascular Endothelial Growth Factor (VEGF), a long-known angiogenic factor, has demonstrated both damaging and neuroprotective effects, prompting a careful consideration of long-term anti-VEGF therapy. CONCLUSION: Current DR treatments primarily address vascular symptoms but fall short of preventing or halting the disease. Insights into the mechanisms of retinal neurodegeneration in the setting of diabetes mellitus not only enhance our understanding of DR but also pave the way for future therapeutic interventions aimed at preventing disease progression and preserving vision.

2.
Int J Mol Sci ; 25(5)2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38474297

ABSTRACT

Diabetic retinopathy (DR), a prevalent complication of diabetes mellitus affecting a significant portion of the global population, has long been viewed primarily as a microvascular disorder. However, emerging evidence suggests that it should be redefined as a neurovascular disease with multifaceted pathogenesis rooted in oxidative stress and advanced glycation end products. The transforming growth factor-ß (TGF-ß) signaling family has emerged as a major contributor to DR pathogenesis due to its pivotal role in retinal vascular homeostasis, endothelial cell barrier function, and pericyte differentiation. However, the precise roles of TGF-ß signaling in DR remain incompletely understood, with conflicting reports on its impact in different stages of the disease. Additionally, the BMP subfamily within the TGF-ß superfamily introduces further complexity, with BMPs exhibiting both pro- and anti-angiogenic properties. Furthermore, TGF-ß signaling extends beyond the vascular realm, encompassing immune regulation, neuronal survival, and maintenance. The intricate interactions between TGF-ß and reactive oxygen species (ROS), non-coding RNAs, and inflammatory mediators have been implicated in the pathogenesis of DR. This review delves into the complex web of signaling pathways orchestrated by the TGF-ß superfamily and their involvement in DR. A comprehensive understanding of these pathways may hold the key to developing targeted therapies to halt or mitigate the progression of DR and its devastating consequences.


Subject(s)
Diabetes Mellitus , Diabetic Retinopathy , Humans , Diabetic Retinopathy/metabolism , Transforming Growth Factor beta/metabolism , Oxidative Stress , Reactive Oxygen Species/metabolism , Bone Morphogenetic Proteins/metabolism , Signal Transduction/physiology , Retina/metabolism , Diabetes Mellitus/metabolism
3.
Bioorg Med Chem Lett ; 96: 129498, 2023 11 15.
Article in English | MEDLINE | ID: mdl-37804994

ABSTRACT

Neurodegenerative disease is a debilitating and incurable condition that affects millions of people around the world. The loss of functions or malfunctions of neural cells are the causes of mortality. A proteosome inhibitor, MG132, is well known to cause neurodegeneration in vitro when model neuronal-derived cell lines are exposed to it. Niclosamide, an anthelmintic drug, which has been used to treat tapeworm infections for more than 50 years, has recently attracted renewed attention in drug repurposing because it has been found to be a good candidate in many drug development screenings. We recently found that all markers of MG132-induced neuronal cell toxicity, including the accumulation of ubiquitinated proteins, were prevented by the presence of niclosamide. In addition, niclosamide was shown to enhance autophagy induced by MG132. There results suggested that niclosamide could act as a neuroprotective agent. In the present study, niclosamide derivatives were synthesized, and the structure-activity relationship (SAR) were determined with respect to protein ubiquitination induced by MG132 and effect on cell survival signaling pathways for neuroprotective function. Our results indicate that phenol OH plays a significant role in neuroprotective activity while the niclosamide derivatives without Cl (5- or 2'-Cl) showed almost the same neuroprotective effect. 4'-NO2 can be replaced by N3 or CF3 whereas NH2 significantly decreased activity. These findings provide guidance for the development of new niclosamide analogues against neurodegenerative diseases including Parkinson's disease.


Subject(s)
Neuroblastoma , Neurodegenerative Diseases , Neuroprotective Agents , Humans , Niclosamide/pharmacology , Neurodegenerative Diseases/drug therapy , Cell Line, Tumor , Neuroblastoma/drug therapy , Neuroprotective Agents/pharmacology , Structure-Activity Relationship , Apoptosis
4.
Oncotarget ; 13: 642-658, 2022.
Article in English | MEDLINE | ID: mdl-35548329

ABSTRACT

Glioblastoma multiforme (GBM) is one of the deadliest cancers of the brain. Its ability to infiltrate healthy brain tissues renders it difficult to remove surgically. Furthermore, it exhibits high rates of radio- and chemoresistance, making the survival rates of patients with GBM poor. Therefore, novel effective therapies for GBM remain urgently in demand. Niclosamide is an anti-helminthic drug and recently it has been receiving attention due to its reported anticancer effects in cancer models, including GBM. Furthermore, camptothecin (CPT) is a naturally-occurring alkaloid and has been previously reported to be a potential chemotherapeutic agent by targeting the nuclear topoisomerase I. In the present study, the possible combined chemotherapeutic effects of niclosamide and CPT on the human glioblastoma cell line U87 MG was investigated by MTT assay and western blot analysis. Niclosamide exhibited synergistic activities with CPT to suppress the proliferation of U87 MG cells. Additionally, niclosamide suppressed cell proliferation and induced cell death mainly by triggering ER stress and autophagy, whilst CPT induced cell apoptosis mainly through p53-mediated mitochondrial dysfunction and activation of the MAPK (ERK/JNK) pathways. Overall, these findings suggest that co-administration of niclosamide and CPT may provide a novel therapeutic treatment strategy for GBM.


Subject(s)
Antineoplastic Agents , Brain Neoplasms , Glioblastoma , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Apoptosis , Brain Neoplasms/drug therapy , Brain Neoplasms/metabolism , Camptothecin/pharmacology , Camptothecin/therapeutic use , Cell Line, Tumor , DNA Topoisomerases, Type I/metabolism , Glioblastoma/drug therapy , Glioblastoma/metabolism , Humans , Niclosamide/pharmacology , Niclosamide/therapeutic use , Tumor Suppressor Protein p53/metabolism
5.
Article in English | MEDLINE | ID: mdl-37223259

ABSTRACT

The first International Conference on Cancer Health Disparities (ICCHD) was held on August 13-14, 2021, in Harlingen, TX, USA. This two-day ICCHD-2021 was organized by the University of Texas Rio Grande Valley, School of Medicine (UTRGV-SOM). About 200 national and international delegates from 10 countries attended this hybrid meeting in person and through online digital platforms. The event delegates were representatives from National Institutes of Health (NIH), Cancer Prevention and Research Institute of Texas (CPRIT), and the City of Harlingen, in addition to clinicians, faculty, researchers, scientists, bioinformaticians, geneticists, bioethicists, and others. Under the theme of Cancer Health Disparities, this event featured a number of special talks and showcased the work done by researchers from a broad array of disciplines (academia, community, and health care) to identify gaps and/or solutions to multi-faceted heath and health disparity issues impacting minority and underserved populations across the country and worldwide. The conference was comprised of six sessions: Session 1: Introduction to the conference and tackling cancer health disparities; Session 2: Elimination of cancer health disparities; Session 3: Cancer cellular and molecular biology; Session 4: Diversity and Inclusion in cancer research: Session 5: Poster and oral presentations, and Early career investigator talks; Session 6: An award ceremony and closing remarks. This conference report summarizes the meeting's content, discussions, and conclusions.

6.
Protein Sci ; 30(11): 2246-2257, 2021 11.
Article in English | MEDLINE | ID: mdl-34538002

ABSTRACT

Chemical synaptic transmission represents the most sophisticated dynamic process and is highly regulated with optimized neurotransmitter balance. Imbalanced transmitters can lead to transmission impairments, for example, intracellular zinc accumulation is a hallmark of degenerating neurons. However, the underlying mechanisms remain elusive. Postsynaptic density protein-95 (PSD-95) is a primary postsynaptic membrane-associated protein and the major scaffolding component in the excitatory postsynaptic densities, which performs substantial functions in synaptic development and maturation. Its membrane association induced by palmitoylation contributes largely to its regulatory functions at postsynaptic sites. Unlike other structural domains in PSD-95, the N-terminal region (PSD-95NT) is flexible and interacts with various targets, which modulates its palmitoylation of two cysteines (C3/C5) and glutamate receptor distributions in postsynaptic densities. PSD-95NT contains a putative zinc-binding motif (C2H2) with undiscovered functions. This study is the first effort to investigate the interaction between Zn2+ and PSD-95NT. The NMR titration of 15 N-labeled PSD-95NT by ZnCl2 was performed and demonstrated Zn2+ binds to PSD-95NT with a binding affinity (Kd ) in the micromolar range. The zinc binding was confirmed by fluorescence and mutagenesis assays, indicating two cysteines and two histidines (H24, H28) are critical residues for the binding. These results suggested the concentration-dependent zinc binding is likely to influence PSD-95 palmitoylation since the binding site overlaps the palmitoylation sites, which was verified by the mimic PSD-95 palmitoyl modification and intact cell palmitoylation assays. This study reveals zinc as a novel modulator for PSD-95 postsynaptic membrane association by chelating its N-terminal region, indicative of its importance in postsynaptic signaling.


Subject(s)
Chelating Agents , Disks Large Homolog 4 Protein , Lipoylation , Zinc , Amino Acid Motifs , Chelating Agents/chemistry , Chelating Agents/metabolism , Disks Large Homolog 4 Protein/chemistry , Disks Large Homolog 4 Protein/genetics , Disks Large Homolog 4 Protein/metabolism , HEK293 Cells , Humans , Protein Domains , Zinc/chemistry , Zinc/metabolism
7.
Arch Clin Exp Ophthalmol ; 3(2): 23-28, 2021.
Article in English | MEDLINE | ID: mdl-35072165

ABSTRACT

Diabetic Retinopathy (DR) is a leading cause of blindness in the U.S. However, not much is known of underlying molecular mechanism and how oxidative stress contributes to its development. In the present study, we investigated the involvement of TGFß signaling pathway on the effect of oxidative stress on VEGF secretion and viability of retinal cells. VEGF is the hallmark that exacerbates DR progression in prolonged diabetes. Some major concerns that have arisen are the underlying effects of antioxidants in elevating VEGF secretion in diabetes. In this study, we evaluated how hypoxia (or low oxygen) impacts viability and VEGF secretion using 661W cone photoreceptor cells. Confluent 661W cells were grown in 5.5 mM normal or 30 mM high glucose, as well as subjected to CoCl2 to induce hypoxia. After treatment for 24 hours, conditioned media were collected for ELISA measurement to determine the amount of protein (VEGF) secretion. Viable cell numbers were also recorded. High glucose did not induce significant changes in viable cell number nor VEGF concentration in cell media. However, hypoxia condition resulted in a three-fold decrease in viable cell numbers and a three-fold increase in VEGF concentration. Furthermore, treatment with two TGFß inhibitors: SMAD 3, SIS (or Inhibitor 1) and TGFß receptor 1 kinase inhibitor (or Inhibitor 2) resulted in a reversal of hypoxia-induced changes. These results strongly suggest that TGFß signaling pathway mediates hypoxia-induced retinal cell viability and VEGF secretion. Further translational research studies will provide evidence to identify appropriate and effective pharmaceutical targets in this molecular pathway to mitigate the development of DR.

8.
Int J Mol Sci ; 21(10)2020 May 19.
Article in English | MEDLINE | ID: mdl-32438692

ABSTRACT

Pancreatic cancer is the worst exocrine gastrointestinal cancer leading to the highest mortality. Recent studies reported that aberrant expression of apurinic/apyrimidinic endodeoxyribonuclease 1 (APE1) is involved in uncontrolled cell growth. However, the molecular mechanism of APE1 biological role remains unrevealed in pancreatic cancer progression. Here, we demonstrate that APE1 accelerates pancreatic cancer cell proliferation through glial cell line-derived neurotrophic factor (GDNF)/glial factor receptor α1 (GFRα1)/Src/ERK axis-cascade signaling. The proliferation of endogenous APE1 expressed-MIA PaCa-2, a human pancreatic carcinoma cell line, was increased by treatment with GDNF, a ligand of GFRα1. Either of downregulated APE1 or GFRα1 expression using small interference RNA (siRNA) inhibited GDNF-induced cancer cell proliferation. The MEK-1 inhibitor PD98059 decreased GDNF-induced MIA PaCa-2 cell proliferation. Src inactivation by either its siRNA or Src inhibitor decreased ERK-phosphorylation in response to GDNF in MIA PaCa-2 cells. Overexpression of GFRα1 in APE1-deficient MIA PaCa-2 cells activated the phosphorylation of Src and ERK. The expression of both APE1 and GFRα1 was gradually increased as progressing pancreatic cancer grades. Our results highlight a critical role for APE1 in GDNF-induced pancreatic cancer cell proliferation through APE1/GFRα1/Src/ERK axis-cascade signaling and provide evidence for future potential therapeutic drug targets for the treatment of pancreatic cancer.


Subject(s)
DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism , Glial Cell Line-Derived Neurotrophic Factor Receptors/metabolism , Glial Cell Line-Derived Neurotrophic Factor/pharmacology , MAP Kinase Signaling System , Pancreatic Neoplasms/pathology , src-Family Kinases/metabolism , Aged , Aged, 80 and over , Cell Line, Tumor , Cell Proliferation/drug effects , Disease Progression , Female , Humans , MAP Kinase Signaling System/drug effects , Male , Middle Aged , Models, Biological , Neoplasm Invasiveness , Phosphorylation/drug effects , Pancreatic Neoplasms
9.
Oncogene ; 39(21): 4241-4256, 2020 05.
Article in English | MEDLINE | ID: mdl-32286519

ABSTRACT

T-cell protein tyrosine phosphatase (TC-PTP), encoded by Ptpn2, has been shown to function as a tumor suppressor during skin carcinogenesis. In the current study, we generated a novel epidermal-specific TC-PTP-overexpressing (K5HA.Ptpn2) mouse model to show that TC-PTP contributes to the attenuation of chemically induced skin carcinogenesis through the synergistic regulation of STAT1, STAT3, STAT5, and PI3K/AKT signaling. We found overexpression of TC-PTP increased epidermal sensitivity to DMBA-induced apoptosis and it decreased TPA-mediated hyperproliferation, coinciding with reduced epidermal thickness. Inhibition of STAT1, STAT3, STAT5, or AKT reversed the effects of TC-PTP overexpression on epidermal survival and proliferation. Mice overexpressing TC-PTP in the epidermis developed significantly reduced numbers of tumors during skin carcinogenesis and presented a prolonged latency of tumor initiation. Examination of human papillomas and squamous cell carcinomas (SCCs) revealed that TC-PTP expression was significantly reduced and TC-PTP expression was inversely correlated with the increased grade of SCCs. Our findings demonstrate that TC-PTP is a potential therapeutic target for the prevention of human skin cancer given that it is a major negative regulator of oncogenic signaling.


Subject(s)
Carcinoma, Squamous Cell/enzymology , Epidermis/metabolism , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Neoplastic , Neoplasm Proteins/metabolism , Papilloma/enzymology , Protein Tyrosine Phosphatase, Non-Receptor Type 2/biosynthesis , Signal Transduction , Skin Neoplasms/enzymology , Animals , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/pathology , Cell Proliferation , Cell Survival , Epidermis/pathology , Humans , Mice , Mice, Transgenic , Neoplasm Proteins/genetics , Papilloma/genetics , Papilloma/pathology , Protein Tyrosine Phosphatase, Non-Receptor Type 2/genetics , Skin Neoplasms/genetics , Skin Neoplasms/pathology
10.
Arch Clin Exp Ophthalmol ; 2(3): 73-76, 2020.
Article in English | MEDLINE | ID: mdl-34476420

ABSTRACT

Since the publication of our previous paper, Visual cycle proteins: Structure, function, and roles in human retinal disease (Tsin, et.al, JBC 293:13016, 2018) there has been significant progress on multiple topics discussed in this paper. In the present communication, we further explore research advances on two visual cycle proteins: DES1 and IRBP. In addition, we emphasize the progress of clinical translation of other visual cycle protein research, including the breakthrough of FDA-approved gene therapy for Leber's congenital amaurosis, and additional gene therapies at different stages of clinical trials for various retinal diseases such as retinitis pigmentosa, diabetic retinopathy, and Stargardt's disease.

11.
J Biol Chem ; 293(34): 13016-13021, 2018 08 24.
Article in English | MEDLINE | ID: mdl-30002120

ABSTRACT

Here, we seek to summarize the current understanding of the biochemical and molecular events mediated by visual cycle molecules in the eye. The structures and functions of selected visual cycle proteins and their roles in human retinal diseases are also highlighted. Genetic mutations and malfunctions of these proteins provide etiological evidence that many ocular diseases arise from anomalies of retinoid (vitamin A) metabolism and related visual processes. Genetic retinal disorders such as retinitis pigmentosa, Leber's congenital amaurosis, and Stargardt's disease are linked to structural changes in visual cycle proteins. Moreover, recent reports suggest that visual cycle proteins may also play a role in the development of diabetic retinopathy. Basic science has laid the groundwork for finding a cure for many of these blindness-causing afflictions, but much work remains. Some translational research projects have advanced to the clinical trial stage, while many others are still in progress, and more are at the ideas stage and remain yet to be tested. Some examples of these studies are discussed. Recent and future progress in our understanding of the visual cycle will inform intervention strategies to preserve human vision and prevent blindness.


Subject(s)
Eye Proteins/chemistry , Eye Proteins/metabolism , Retinal Diseases/physiopathology , Visual Acuity , Awards and Prizes , Humans
12.
Cell Death Dis ; 9(7): 730, 2018 06 28.
Article in English | MEDLINE | ID: mdl-29955047

ABSTRACT

UVB exposure can contribute to the development of skin cancer by modulating protein tyrosine kinase (PTK) signaling. It has been suggested that UVB radiation increases the ligand-dependent activation of PTKs and induces PTP inactivation. Our recent studies have shown that T-cell protein tyrosine phosphatase (TC-PTP) attenuates skin carcinogenesis induced by chemical regimens, which indicates its critical role in the prevention of skin cancer. In the current work, we report that TC-PTP increases keratinocyte susceptibility to UVB-induced apoptosis via the downregulation of Flk-1/JNK signaling. We showed that loss of TC-PTP led to resistance to UVB-induced apoptosis in vivo epidermis. We established immortalized primary keratinocytes (IPKs) from epidermal-specific TC-PTP-deficient (K14Cre.Ptpn2fl/fl) mice. Immortalized TC-PTP-deficient keratinocytes (TC-PTP/KO IPKs) showed increased cell survival against UVB-induced apoptosis which was concomitant with a UVB-mediated increase in Flk-1 phosphorylation, especially on tyrosine residue 1173. Inhibition of Flk-1 by either its specific inhibitors or siRNA in TC-PTP/KO IPKs reversed this effect and significantly increased cell death after UVB irradiation in comparison with untreated TC-PTP/KO IPKs. Immunoprecipitation analysis using the TC-PTP substrate-trapping mutant TCPTP-D182A indicated that TC-PTP directly interacts with Flk-1 to dephosphorylate it and their interaction was stimulated by UVB. Following UVB-mediated Flk-1 activation, the level of JNK phosphorylation was also significantly increased in TC-PTP/KO IPKs compared to control IPKs. Similar to our results with Flk-1, treatment of TC-PTP/KO IPKs with the JNK inhibitor SP600125 significantly increased apoptosis after UVB irradiation, confirming that the effect of TC-PTP on UVB-mediated apoptosis is regulated by Flk-1/JNK signaling. Western blot analysis showed that both phosphorylated Flk-1 and phosphorylated JNK were significantly increased in the epidermis of TC-PTP-deficient mice compared to control mice following UVB. Our results suggest that TC-PTP plays a protective role against UVB-induced keratinocyte cell damage by promoting apoptosis via negative regulation of Flk-1/JNK survival signaling.


Subject(s)
Epidermal Cells/radiation effects , Epidermis/metabolism , Gene Deletion , MAP Kinase Signaling System , Protein Tyrosine Phosphatase, Non-Receptor Type 2/genetics , Ultraviolet Rays , Vascular Endothelial Growth Factor Receptor-2/metabolism , Animals , Apoptosis/radiation effects , Cell Survival/radiation effects , Cells, Cultured , Keratinocytes/metabolism , Keratinocytes/radiation effects , MAP Kinase Signaling System/radiation effects , Mice , Mice, Knockout , Organ Specificity , Phosphorylation , Protein Tyrosine Phosphatase, Non-Receptor Type 2/metabolism , Tyrosine/metabolism
13.
Growth Horm IGF Res ; 41: 42-47, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29452885

ABSTRACT

IMPORTANCE: Diabetic retinopathy (DR) is one of the most common of all diabetic complications. The number of people with DR in the United States is expected to increase to 16 million by 2050. DR is the leading cause of blindness among working-age adults in many different countries, including the United States. In later DR stages, neovascularization is associated with extensive retinal capillary non-perfusion and vitreo-proliferation leading to retinal detachment. This neovascularization is orchestrated by an imbalance of growth factors in the retina from which somatolactogens (pituitary growth hormone, GH-N; placental growth hormone, GH-V; prolactin, PRL; and placental lactogen, PL, also referred as chorionic somatomammotropin, CSH), may play an important role. OBSERVATIONS: Somatolactogens are a group of hormones that share many structural and functional features. They are important for physiological changes in pregnancy, for adequate development of the fetus, and in the case of GH-N, for promoting growth after birth. GH-N is synthesized by the anterior pituitary, GH-V and PL are secreted by the placenta, whereas, PRL is synthesized by the anterior pituitary and uterine decidua. However, in recent years the expression of GH-N and PRL and their receptors have been detected in other tissues including the retina, acting as neuroprotective and pro-angiogenic agents. The relationship of GH-N and diabetic retinopathy (DR) was established many years ago when it was observed that its deficiency was related to regression of DR while an increase in serum levels of GH-N, GH-V, and PL promoted DR. While more studies are needed to define the potential implications of GH-V and PL in DR pathogenesis, it has been demonstrated that GH-N and PRL participate in DR by enhancing neovascularization. Some PRL isoforms, however, have shown an anti-angiogenic activity rather than pro-angiogenesis and appears to be PRL's main role in the regulation of retinal vasculature. CONCLUSIONS: Somatolactogens are a group of hormones with a significant role in neuroprotection and angiogenesis regulation in the eye. Understanding the mechanisms of angiogenesis regulation by somatolactogens will potentially lead to the development of new drugs for DR.


Subject(s)
Diabetic Retinopathy/physiopathology , Neovascularization, Pathologic/pathology , Placental Lactogen/metabolism , Animals , Humans , Neovascularization, Pathologic/metabolism
14.
Exp Eye Res ; 169: 157-169, 2018 04.
Article in English | MEDLINE | ID: mdl-29407222

ABSTRACT

The human growth hormone (GH) locus is comprised by two GH (GH1 and GH2) genes and three chorionic somatomammotropin (CSH1, CSH2 and CSH-L) genes. While GH1 is expressed in the pituitary gland, the rest are expressed in the placenta. However, GH1 is also expressed in several extrapituitary tissues, including the eye. So to understand the role of this hormone in the eye we used the baboon (Papio hamadryas), that like humans has a multigenic GH locus; we set up to investigate the expression and regulation of GH locus in adult and fetal baboon ocular tissues. We searched in baboon ocular tissues the expression of GH1, GH2, CSH1/2, Pit1 (pituitary transcription factor 1), GHR (growth hormone receptor), GHRH (growth hormone releasing hormone), GHRHR (growth hormone releasing hormone receptor), SST (somatostatin), SSTR1 (somatostatin receptor 1), SSTR2 (somatostatin receptor 2), SSTR3 (somatostatin receptor 3), SSTR4 (somatostatin receptor 4), and SSTR5 (somatostatin receptor 5) mRNA transcripts and derived proteins, by qPCR and immunofluorescence assays, respectively. The transcripts found were characterized by cDNA cloning and sequencing, having found only the one belonging to GH1 gene, mainly in the retina/choroid tissues. Through immunofluorescence assays the presence of GH1 and GHR proteins was confirmed in several retinal cell layers. Among the possible neuroendocrine regulators that may control local GH1 expression are GHRH and SST, since their mRNAs and proteins were found mainly in the retina/choroid tissues, as well as their corresponding receptors (GHRH and SSTR1-SSTR5). None of the ocular tissues express Pit1, so gene expression of GH1 in baboon eye could be independent of Pit1. We conclude that to understand the regulation of GH in the human eye, the baboon offers a very good experimental model.


Subject(s)
Eye/metabolism , Gene Expression Regulation/physiology , Growth Hormone/genetics , Animals , Female , Fluorescent Antibody Technique, Indirect , Humans , Papio hamadryas , Pituitary Gland/metabolism , Pregnancy , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Receptors, Somatotropin/genetics
15.
PLoS One ; 12(9): e0184324, 2017.
Article in English | MEDLINE | ID: mdl-28877265

ABSTRACT

Glioblastoma is the most common and lethal malignant primary brain tumor for which the development of efficacious chemotherapeutic agents remains an urgent need. The anti-helminthic drug niclosamide, which has long been in use to treat tapeworm infections, has recently attracted renewed interest due to its apparent anticancer effects in a variety of in vitro and in vivo cancer models. However, the mechanism(s) of action remains to be elucidated. In the present study, we found that niclosamide induced cell toxicity in human glioblastoma cells corresponding with increased protein ubiquitination, ER stress and autophagy. In addition, niclosamide treatment led to down-regulation of Wnt/ß-catenin, PI3K/AKT, MAPK/ERK, and STAT3 pro-survival signal transduction pathways to further reduce U-87 MG cell viability. Taken together, these results provide new insights into the glioblastoma suppressive capabilities of niclosamide, showing that niclosamide can target multiple major cell signaling pathways simultaneously to effectively promote cell death in U-87 MG cells. Niclosamide constitutes a new prospect for a therapeutic treatment against human glioblastoma.


Subject(s)
Antineoplastic Agents/pharmacology , Brain Neoplasms/metabolism , Glioblastoma/metabolism , Niclosamide/pharmacology , Ubiquitination , Anthelmintics/chemistry , Apoptosis , Brain Neoplasms/drug therapy , Cadaverine/analogs & derivatives , Cadaverine/chemistry , Cell Line, Tumor , Cell Proliferation , Cell Survival , Drug Screening Assays, Antitumor , Glioblastoma/drug therapy , Humans , STAT3 Transcription Factor/metabolism , Signal Transduction
16.
Curr Diabetes Rev ; 13(2): 161-174, 2017.
Article in English | MEDLINE | ID: mdl-27748176

ABSTRACT

Vascular endothelial growth factor (VEGF) is well established as the main agent responsible for vascular leakage and angiogenesis in the diabetic retina. While VEGF can have positive effects on hyperglycemia stressed retinal tissues, it also plays a role in events progressing to the oxygen- stressed, i.e. hypoxic, diabetic retina. Some VEGF makes its way to the retina from systemic sources and some is produced locally within the eye. Hyperglycemia, oxidants, inflammation, and advanced glycation end-products are all stimulants to VEGF production, both in the hypoxic and the pre-hypoxic retina. Endothelial cells, pericytes, Müller cells, microglia, astrocytes, retinal pigment epithelium and neurons have all been known to produce VEGF at some point in retinal development or in disease. Excessive VEGF production in the early diabetic retina can lead to retinal exposure or mechanisms which exacerbate further damage. While Müller cells are likely the most significant producer of VEGF in the pre-hypoxic retina, other VEGF producing cells may also play a role due to their proximity to vessels or neurons. Study of the release of VEGF by retinal cells in hyperglycemia conditions, may help identify targets for early treatment and prevent the serious consequences of diabetic retinopathy.


Subject(s)
Diabetic Retinopathy/etiology , Vascular Endothelial Growth Factor A/metabolism , Animals , Autocrine Communication , Endothelial Cells/physiology , Humans , Neuroglia/physiology , Paracrine Communication , Pericytes/physiology , Retinal Pigment Epithelium/physiology
17.
Curr Aging Sci ; 10(1): 68-75, 2017.
Article in English | MEDLINE | ID: mdl-27659265

ABSTRACT

BACKGROUND: Rb1 is a ginsenoside steroid glycoside found exclusively in the plant Panax ginseng. In an earlier report, we showed that Rb1 increased cell proliferation and reduced VEGF (vascular endothelial growth factor) secretion by human retinal pigment epithelial (ARPE19) cells. OBJECTIVE: In the present study, we hypothesized that chemical modification of Rb1 changes the level of VEGF secretion by ARPE19 cells. METHOD: Three derivatives of Rb1 were chemically synthesized by hydrogenation (Rb1-H2), acetylation (Rb1-Acyl), and epoxidation (Rb1-Epoxy). Structural modifications were confirmed by 1H Nuclear Magnetic Resonance (NMR) spectra and Mass Spectrometry (MS). To test the biological activity, chemically modified compounds were added to cell culture media and incubated for 72 hours at a concentration of 250 nM at 37°C. Conditioned media were collected and cells were harvested/ counted after treatment. Viable cell numbers were determined by the trypan blue dye exclusion method and VEGF levels by Enzyme-Linked Immunosorbent Assays (ELISA). RESULTS: Consistent with the prior report, results of the present study show Rb1 increased cell proliferation and decreased VEGF secretion. Similar to Rb1's effect on cell proliferation, treatment with Rb1-H2, Rb1-Acyl and Rb1-Epoxy resulted in an increase in cell numbers. In contrast to Rb1- induced decrease in VEGF secretion, treatment with Rb1-H2, Rb-Acyl and Rb1-Epoxy resulted in increased VEGF levels. CONCLUSION: Chemical modifications of the ginsenoside Rb1 significantly affect the biological activity of VEGF secretion by ARPE19 cells. Additional SAR (Structure Activity Relationship) experiments will be conducted to study the detailed mechanisms by which how specific modifications of Rb1 functional groups alter biological activities.


Subject(s)
Cytokines/biosynthesis , Ginsenosides/chemistry , Ginsenosides/pharmacology , Cell Survival/drug effects , Cells, Cultured , Choroidal Neovascularization/drug therapy , Ginsenosides/chemical synthesis , Humans , Retinal Pigment Epithelium/cytology , Retinal Pigment Epithelium/drug effects , Retinal Pigment Epithelium/metabolism , Structure-Activity Relationship , Vascular Endothelial Growth Factor A/biosynthesis
18.
Article in English | MEDLINE | ID: mdl-27833938

ABSTRACT

Previous studies have shown that in diabetic patients, there is an increase of retinal capillaries associated with the development of diabetic retinopathy in the eye. The objective of current study is to investigate the effect of glucose on retinal endothelial cell viability and VEGF secretion. 20,000 cells per well were treated without glucose or with 5.5mM (euglycemic), 18.5mM and 30mM (hyperglycemic) glucose for 24 hours. Viable cells were counted using Trypan blue dye exclusion method. ELISA was used to measure VEGF secretion from cells into the cell medium. The number of viable cells incubated with 5.5mM glucose (physiological control) increased by 53.7% after 24 hours. In comparison, cells treated with 18.5mM glucose decreased by 2.8% while cells treated with 30mM glucose decreased by 20% after 24 hours of incubation. Cells without glucose treatment (0mM control) decreased by 33.3%. In contrast to the decrease of viable cell numbers after treatment with high glucose, there is an increase in VEGF secretion (pg/mL) to the cell medium with increase in glucose concentration from 5.5mM to 0, 18.5, and 30mM. The amount of VEGF secreted per cell also increased with increasing glucose concentrations. Our results show that viability of retinal endothelial cells and VEGF release are highly responsive to changes in glucose concentration. Such glucose-induced changes in retinal endothelial cells may negatively impact the integrity of the microvasculature in the diabetic retina leading to angiogenesis and microaneursyms.

19.
Open Neurol J ; 10: 83-7, 2016.
Article in English | MEDLINE | ID: mdl-27651846

ABSTRACT

The aim of this research is to determine whether oxidative stress induces cellular senescence in human retinal pigment epithelial cells. Cultured ARPE19 cells were subjected to different concentrations of hydrogen peroxide to induce oxidative stress. Cells were seeded into 24-well plates with hydrogen peroxide added to cell medium and incubated at 37°C + 5% CO2 for a 90-minute period [at 0, 300, 400 and 800 micromolar (MCM) hydrogen peroxide]. The number of viable ARPE19 cells were recorded using the Trypan Blue Dye Exclusion Method and cell senescence was measured by positive staining for senescence-associated beta-galactosidase (SA-beta-Gal) protein. Without hydrogen peroxide treatment, the number of viable ARPE19 cells increased significantly from 50,000 cells/well to 197,000 within 72 hours. Treatment with hydrogen peroxide reduced this level of cell proliferation significantly (to 52,167 cells at 400 MCM; to 49,263 cells at 800 MCM). Meanwhile, cells with a high level of positive senescence-indicator SA-Beta-Gal-positive staining was induced by hydrogen peroxide treatment (from a baseline level of 12% to 80% at 400 MCM and at 800 MCM). Our data suggests that oxidative stress from hydrogen peroxide treatment inhibited ARPE19 cell proliferation and induced cellular senescence.

20.
Mol Vis ; 22: 953-8, 2016.
Article in English | MEDLINE | ID: mdl-27559291

ABSTRACT

PURPOSE: Assaying photodecomposition is challenging because light must be used to initiate the photodamage and light must be used to monitor the photodecomposition. The experimental requirements are as follows: 1) During exposure of the actinic beam, continuously monitor the spectral characteristics of the sample, 2) uniformly expose the reactants to the actinic source, 3) obtain informative spectra in the presence of light scatter, and 4) achieve sufficient sensitivity for dilute reactants. Traditional spectrophotometers cannot address these issues due to sample turbidity, the inability to uniformly expose the cuvette contents to the incident beam, the inability to simultaneously perform spectral scans, and inherent low sensitivity. Here, we describe a system that meets these challenges in a practical way. METHODS: Light access to a 8.6 ml quartz integrating sphere containing 10 µM all-trans retinol in PBS was provided by three ports at right angles allowing for the following: 1) actinic light delivery from light-emitting diodes (LEDs) firing at 100 pulses/sec, 2) entry of a separate scanning beam at 100 scans/sec (10,000 µsec scan time) via an OLIS RSM 1000 ultraviolet/visual (UV/Vis) rapid-scanning spectrophotometer (RSM), and 3) light exit to the detector photomultiplier. The RSM spectral intermediate slit was partially covered to allow for a "dark" period of 2,000 µsec when no scanning light was admitted to the cuvette. During that interval, the LED was flashed, and the photomultiplier was temporarily blocked by a perforated spinning shutter disk. The absorbance per centimeter, which is increased due to the internal reflectance of the integrating sphere compared to a standard 1 cm rectangular cuvette, was calculated according to Fry et al. (2010) Applied Optics 49:575. Retinoid photodecomposition was confirmed with high-performance liquid chromatography (HPLC). RESULTS: Using the RSM to trigger the LED flash and photomultiplier shutter closure during the "dark" period allowed actinic flashes to be placed between scans. Exposure of the all-trans retinol to 366 nm flashes resulted in marked reduction in absorbance and a blue shift of the λmax. A white LED, despite its higher photon output, did not support all-trans retinol photolysis. Singular value decomposition (SVD) analysis revealed three spectral intermediates with mechanism, I -> II -> III. HPLC analysis of the reactants at the beginning and the conclusion of the light exposure confirmed the retinol photodecomposition. CONCLUSIONS: The highly reflecting cavity acts as a multipass cuvette that markedly increased the light path length and, thus, sensitivity. Triggering the LED during a dark period within the scan time allowed the actinic flashes to be interleafed between scans in a pump-probe paradigm. Furthermore, the entire sample was exposed to scan beam and actinic flashes, which is not possible in traditional spectrophotometers. Finally, the integrating cavity cuvette allowed use of turbid samples. SVD was useful for resolving spectral intermediates. Although the identity of the intermediates was not determined here, the ability to define molecular intermediates during photodecomposition reactions will allow future studies to isolate and identify the degradation products and determine the mechanism of light-induced retinoid degradation and that of retinoid-binding protein-mediated photoprotection.


Subject(s)
Retinoids/chemistry , Ultraviolet Rays , Vitamin A/radiation effects , Photochemistry , Photolysis , Vitamin A/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...