Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Phys ; 156(11): 114703, 2022 Mar 21.
Article in English | MEDLINE | ID: mdl-35317571

ABSTRACT

Monolayer and two-dimensional (2D) systems exhibit rich phase behavior, compared with 3D systems, in particular, due to the hexatic phase playing a central role in melting scenarios. The attraction range is known to affect critical gas-liquid behavior (liquid-liquid in protein and colloidal systems), but the effect of attraction on melting in 2D systems remains unstudied systematically. Here, we have revealed how the attraction range affects the phase diagrams and melting scenarios in a 2D system. Using molecular dynamics simulations, we have considered the generalized Lennard-Jones system with a fixed repulsion branch and different power indices of attraction from long-range dipolar to short-range sticky-sphere-like. A drop in the attraction range has been found to reduce the temperature of the gas-liquid critical point, bringing it closer to the gas-liquid-solid triple point. At high temperatures, attraction does not affect the melting scenario that proceeds through the cascade of solid-hexatic (Berezinskii-Kosterlitz-Thouless) and hexatic-liquid (first-order) phase transitions. In the case of dipolar attraction, we have observed two triple points inherent in a 2D system: hexatic-liquid-gas and crystal-hexatic-gas, the temperature of the crystal-hexatic-gas triple point is below the hexatic-liquid-gas triple point. This observation may have far-reaching consequences for future studies, since phase diagrams determine possible routes of self-assembly in molecular, protein, and colloidal systems, whereas the attraction range can be adjusted with complex solvents and external electric or magnetic fields. The results obtained may be widely used in condensed matter, chemical physics, materials science, and soft matter.

2.
Soft Matter ; 14(11): 2152-2162, 2018 Mar 14.
Article in English | MEDLINE | ID: mdl-29488995

ABSTRACT

A transition from a square to a hexagonal lattice is studied in a 2D system of particles interacting via a core-softened potential. Due to the presence of two length scales of repulsion, different local configurations with four, five, and six neighbors are possible, leading to the formation of complex crystals. The previously proposed interpolation method is generalized to calculate pair correlations in crystals whose unit cell consists of more than one particle. The high efficiency of the method is illustrated using a snub square lattice as a representative example. Molecular dynamics simulations show that the snub square lattice is broken upon heating, generating a high-density quasicrystalline phase with 12-fold symmetry (HD12 phase). A simple theoretical model is proposed to explain the physical mechanism responsible for this phenomenon: with an increase in the density (from square to hexagonal phases), the concentrations of different local configurations randomly realized through a plane tiling change, which minimizes the energy of the system. The calculated phase diagram in the intermediate density range justifies the existence of the HD12 phase and demonstrates a cascade of first-order transitions "square - HD12 - hexagonal" solid phases with increasing density. The results allow us to better understand the physical mechanisms responsible for the formation of quasicrystals, and, therefore, should be of interest for broad community in materials science and soft matter.

3.
J Comput Chem ; 36(12): 901-6, 2015 May 05.
Article in English | MEDLINE | ID: mdl-25753740

ABSTRACT

We present the molecular dynamics study of benzene molecules confined into the single wall carbon nanotube. The local structure and orientational ordering of benzene molecules are investigated. It is found that the molecules mostly group in the middle distance from the axis of the tube to the wall. The molecules located in the vicinity of the wall demonstrate some deviation from planar shape. There is a tilted orientational ordering of the molecules which depends on the location of the molecule. It is shown that the diffusion coefficient of the benzene molecules is very small at the conditions we report here.

SELECTION OF CITATIONS
SEARCH DETAIL
...