Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Front Microbiol ; 14: 1271535, 2023.
Article in English | MEDLINE | ID: mdl-38029212

ABSTRACT

Introduction: Marine viruses regulate microbial population dynamics and biogeochemical cycling in the oceans. The ability of viruses to manipulate hosts' metabolism through the expression of viral auxiliary metabolic genes (AMGs) was recently highlighted, having important implications in energy production and flow in various aquatic environments. Up to now, the presence and diversity of viral AMGs is studied using -omics data, and rarely using quantitative measures of viral activity alongside. Methods: In the present study, four depth layers (5, 50, 75, and 1,000 m) with discrete hydrographic features were sampled in the Eastern Mediterranean Sea; we studied lytic viral community composition and AMG content through metagenomics, and lytic production rates through the viral reduction approach in the ultra-oligotrophic Levantine basin where knowledge regarding viral actions is rather limited. Results and Discussion: Our results demonstrate depth-dependent patterns in viral diversity and AMG content, related to differences in temperature, nutrients availability, and host bacterial productivity and abundance. Although lytic viral production rates were similar along the water column, the virus-to-bacteria ratio was higher and the particular set of AMGs was more diverse in the bathypelagic (1,000 m) than the shallow epipelagic (5, 50, and 75 m) layers, revealing that the quantitative effect of viruses on their hosts may be the same along the water column through the intervention of different AMGs. In the resource- and energy-limited bathypelagic waters of the Eastern Mediterranean, the detected AMGs could divert hosts' metabolism toward energy production, through a boost in gluconeogenesis, fatty-acid and glycan biosynthesis and metabolism, and sulfur relay. Near the deep-chlorophyll maximum depth, an exceptionally high percentage of AMGs related to photosynthesis was noticed. Taken together our findings suggest that the roles of viruses in the deep sea might be even more important than previously thought as they seem to orchestrate energy acquisition and microbial community dynamics, and thus, biogeochemical turnover in the oceans.

2.
Chemosphere ; 336: 139109, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37270041

ABSTRACT

Silver nanoparticles (AgNPs) nowadays appear in close to 24% of consumer products that contain engineered nanomaterials. Thus, they are expected to be released into the environment, where their fate and effect are still undetermined. Considering the evidenced efficacy of the single particle Inductively Coupled Plasma - Mass Spectrometry (sp ICP-MS) technique in the study of nanomaterials, this work reports on the use of sp ICP-MS along with an online dilution sample introduction system for the direct analysis of untreated and spiked seawater samples, as part of a larger scale experiment studying the fate of Ag (ionic and nanoparticles) in seawater mesocosm systems. Silver nanoparticles coated with branched polyethyleneimine (BPEI@AgNPs) or ionic silver (Ag+) were introduced gradually into the seawater mesocosm tanks at very low, environmentally relevant concentrations (50 ng Ag L-1 per day, for 10 consecutive days, up to a total of 500 ng Ag L-1), and samples were collected and analyzed daily, within a consistent time window. Using very low detector dwell time (75 µs) and specialized data treatment, information was obtained on the nanoparticles' size distribution and particle number concentration, as well as the ionic silver content, of both the AgNPs and the Ag+ treated seawater mesocosm tanks. The results for the AgNP treated samples indicated the rapid degradation of the added silver particles, and the subsequent increase of ionic silver, with recoveries close to 100% for the first days of the experiment. On the other hand, particle formation was observed in the Ag+ treated seawater tanks, and even though the number concentration of silver-containing nanoparticles increased throughout the experiment, the amount of silver per particle remained relatively constant from the early days of the experiment. In addition, the online dilution sample introduction system for the ICP-MS proved capable of handling the untreated seawater matrix without significant contamination issues and downtime, while the low dwell time and data treatment procedure developed were shown to be suitable for the analysis of nanomaterials at the low nm-scale, despite the complex and heavy matrix introduced into the ICP-MS.


Subject(s)
Metal Nanoparticles , Silver , Silver/analysis , Metal Nanoparticles/analysis , Seawater , Spectrum Analysis , Ions , Mass Spectrometry/methods , Particle Size
3.
Microorganisms ; 11(2)2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36838238

ABSTRACT

Climate change driven by human activities encompasses the increase in atmospheric CO2 concentration and sea-surface temperature. Little is known regarding the synergistic effects of these phenomena on bacterial communities in oligotrophic marine ecosystems that are expected to be particularly vulnerable. Here, we studied bacterial community composition changes based on 16S rRNA sequencing at two fractions (0.1-0.2 and >0.2 µm) during a 10- day fully factorial mesocosm experiment in the eastern Mediterranean where the pH decreased by ~0.3 units and temperature increased by ~3 °C to project possible future changes in surface waters. The bacterial community experienced significant taxonomic differences driven by the combined effect of time and treatment; a community shift one day after the manipulations was noticed, followed by a similar state between all mesocosms at the third day, and mild shifts later on, which were remarkable mainly under sole acidification. The abundance of Synechococcus increased in response to warming, while the SAR11 clade immediately benefited from the combined acidification and warming. The effect of the acidification itself had a more persistent impact on community composition. This study highlights the importance of studying climate change consequences on ecosystem functioning both separately and simultaneously, considering the ambient environmental parameters.

4.
Sci Total Environ ; 857(Pt 3): 159624, 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36280077

ABSTRACT

Microplastics are substrates for microbial activity and can influence biomass production. This has potentially important implications in the sea-surface microlayer, the marine boundary layer that controls gas exchange with the atmosphere and where biologically produced organic compounds can accumulate. In the present study, we used six large scale mesocosms to simulate future ocean scenarios of high plastic concentration. Each mesocosm was filled with 3 m3 of seawater from the oligotrophic Sea of Crete, in the Eastern Mediterranean Sea. A known amount of standard polystyrene microbeads of 30 µm diameter was added to three replicate mesocosms, while maintaining the remaining three as plastic-free controls. Over the course of a 12-day experiment, we explored microbial organic matter dynamics in the sea-surface microlayer in the presence and absence of microplastic contamination of the underlying water. Our study shows that microplastics increased both biomass production and enrichment of carbohydrate-like and proteinaceous marine gel compounds in the sea-surface microlayer. Importantly, this resulted in a ∼3 % reduction in the concentration of dissolved CO2 in the underlying water. This reduction was associated to both direct and indirect impacts of microplastic pollution on the uptake of CO2 within the marine carbon cycle, by modifying the biogenic composition of the sea's boundary layer with the atmosphere.


Subject(s)
Carbon Dioxide , Water Pollutants, Chemical , Carbon Dioxide/analysis , Microplastics , Plastics , Seawater/chemistry , Water/analysis , Mediterranean Sea , Water Pollutants, Chemical/analysis
5.
Viruses ; 12(8)2020 07 26.
Article in English | MEDLINE | ID: mdl-32722579

ABSTRACT

Viruses interfere with their host's metabolism through the expression of auxiliary metabolic genes (AMGs) that, until now, are mostly studied under large physicochemical gradients. Here, we focus on coastal marine ecosystems and we sequence the viral metagenome (virome) of samples with discrete levels of human-driven disturbances. We aim to describe the relevance of viromics with respect to ecological quality status, defined by the classic seawater trophic index (TRIX). Neither viral (family level) nor bacterial (family level, based on 16S rRNA sequencing) community structure correlated with TRIX. AMGs involved in the Calvin and tricarboxylic acid cycles were found at stations with poor ecological quality, supporting viral lysis by modifying the host's energy supply. AMGs involved in "non-traditional" energy-production pathways (3HP, sulfur oxidation) were found irrespective of ecological quality, highlighting the importance of recognizing the prevalent metabolic paths and their intermediate byproducts. Various AMGs explained the variability between stations with poor vs. good ecological quality. Our study confirms the pivotal role of the virome content in ecosystem functioning, acting as a "pool" of available functions that may be transferred to the hosts. Further, it suggests that AMGs could be used as an ultra-sensitive metric of energy-production pathways with relevance in the vulnerable coastal zone and its ecological quality.


Subject(s)
Ecosystem , Metagenomics , Seawater/virology , Viral Proteins/genetics , Virome , Viruses/genetics , Bacteria/genetics , RNA, Ribosomal, 16S/genetics
6.
Mar Environ Res ; 150: 104752, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31326679

ABSTRACT

The effects of the abrupt input of high quantities of dissolved inorganic nitrogen and phosphorus on prokaryotic and eukaryotic microbial plankton were investigated in an attempt to simulate the nutrient disturbances caused by eutrophication and climate change. Two nutrient levels were created through the addition of different quantities of dissolved nutrients in a mesocosm experiment. During the developed blooms, compositional differences were found within bacteria and microbial eukaryotes, and communities progressed towards species of faster metabolisms. Regarding the different nutrient concentrations, different microbial species were associated with each nutrient treatment and community changes spanned from the phylum to the operational taxonomic unit (OTU) level. Network analyses revealed important differences in the biotic connections developed: more competitive relationships were established in the more intense nutrient disturbance and networks of contrasting complexity were formed around species of different ecological strategies. This work highlights that sudden disturbances in water column chemistry lead to the development of entirely different microbial food webs with distinct ecological characteristics.


Subject(s)
Eukaryota , Microbiota , DNA Barcoding, Taxonomic , Eutrophication , Nitrogen , Nutrients , Phosphorus
7.
Sci Total Environ ; 601-602: 1838-1848, 2017 Dec 01.
Article in English | MEDLINE | ID: mdl-28628993

ABSTRACT

During this study, three microcosm experiments were carried out with natural coastal seawater, collected in the Eastern Mediterranean Sea, in order to assess the effect of silver nanoparticle (AgNP) exposure to natural plankton communities. The impact of coating (branched-polyethyleneimine: BPEI vs. poly-vinylpyrrolidone: PVP), size (40 vs. 60nm), concentration (200, 500, 2000, 5000 and 10,000ng Ag L-1) and silver form (dissolved Ag+ vs. AgNPs) were tested. The results of chlorophyll a concentration revealed that PVP AgNPs caused a higher toxicity than BPEI AgNPs, and this was possibly related to the measured higher dissolution rate. Additionally, toxicity of BPEI AgNPs was size-dependent, with 40 being more toxic than 60 nm AgNPs, which was nevertheless not seen clearly for PVP AgNPs. Interestingly, community composition altered in response to AgNP exposure: cyanobacterial abundance was negatively affected at concentrations ≥200ng Ag L-1, and dinoflagellate abundance and composition were altered at a 2000ng Ag L-1 concentration. Specifically, dinoflagellate (Gymnodinium, Prorocentrum and Gyrodinium) and diatom (Nitzschia, Navicula and Climacosphenia) genera either increased or decreased, highlighting taxa-specific effects, with some of them being able to tolerate, compensate or even benefit from AgNPs. Silver in either form (dissolved Ag+ or in NPs) caused almost identical results in the plankton community, further indicating that Ag+ release is the primary cause of AgNP toxicity. This study employed for the first time environmentally relevant AgNP concentrations (minimum 200ng Ag L-1) in natural seawater without pre-filtration steps and showed that community changes were driven by the exposure but were largely dependent on ambient physico-chemical characteristics and should be further investigated.


Subject(s)
Metal Nanoparticles/toxicity , Plankton/drug effects , Silver/toxicity , Chlorophyll/analysis , Chlorophyll A , Cyanobacteria , Diatoms , Dinoflagellida , Mediterranean Sea
8.
Sci Total Environ ; 601-602: 15-21, 2017 Dec 01.
Article in English | MEDLINE | ID: mdl-28544887

ABSTRACT

This study investigates the dynamic processes affecting silver (Ag) nanoparticles that have been spiked into seawater at environmentally relevant concentrations (200 and 2000ngAgL-1). Seawater samples were taken at regular time intervals from multiple microcosm tanks and analysed rapidly, without any sample preparation, using a recently developed flow injection on-line dilution single particle inductively coupled plasma mass spectrometry method. Dissolution was found to be the predominant process of Ag nanoparticle transformation, with its rate being influenced by the type and thickness of the nanoparticle organic coating. More specifically the branched poly(ethyleneimine) coating provided additional stability to the 40 and 60nmAg nanoparticles that were tested, compared to the poly(vinylpyrrolidone) coated ones. At high Ag nanoparticle spiking levels and after 24h of exposure an extra Ag-containing nanoparticle peak appeared at the low range of the NP size distribution histogram. This peak corresponds to Ag-containing particles that contain Ag mass equivalent to 25-30nm Ag nanoparticles (assuming spherical shape). However, the composition and the "real" size of these particles remains unknown as the particles may have formed from the in-situ reduction of dissolved silver or they originate from other processes involving nanocrystal formation, as has been shown to occur in sewage sludge, or interaction with natural organic matter. Overall, this study provides additional insight into the physicochemical mechanisms behind Ag nanoparticle behavior in marine media.

SELECTION OF CITATIONS
SEARCH DETAIL
...