Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
2.
Entropy (Basel) ; 24(6)2022 Jun 09.
Article in English | MEDLINE | ID: mdl-35741530

ABSTRACT

In this paper, a generalized information-theoretic framework for the emergence of multi-resolution hierarchical tree abstractions is developed. By leveraging ideas from information-theoretic signal encoding with side information, this paper develops a tree search problem which considers the generation of multi-resolution tree abstractions when there are multiple sources of relevant and irrelevant, or possibly confidential, information. We rigorously formulate an information-theoretic driven tree abstraction problem and discuss its connections with information-theoretic privacy and resource-limited systems. The problem structure is investigated and a novel algorithm, called G-tree search, is proposed. The proposed algorithm is analyzed and a number of theoretical results are established, including the optimally of the G-tree search algorithm. To demonstrate the utility of the proposed framework, we apply our method to a real-world example and provide a discussion of the results from the viewpoint of designing hierarchical abstractions for autonomous systems.

3.
Front Robot AI ; 5: 128, 2018.
Article in English | MEDLINE | ID: mdl-33501006

ABSTRACT

This paper lays out a framework to model the kinematics and dynamics of a rigid spacecraft-mounted multibody robotic system. The framework is based on dual quaternion algebra, which combines rotational and translational information in a compact representation. Based on a Newton-Euler formulation, the proposed framework sets up a system of equations in which the dual accelerations of each of the bodies and the reaction wrenches at the joints are the unknowns. Five different joint types are considered in this framework via simple changes in certain mapping matrices that correspond to the joint variables. This differs from previous approaches that require the addition of extra terms that are joint-type dependent, and which decouple the rotational and translational dynamics.

4.
IEEE Trans Syst Man Cybern B Cybern ; 42(5): 1455-69, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22581136

ABSTRACT

We present a path- and motion-planning scheme that is "multiresolution" both in the sense of representing the environment with high accuracy only locally and in the sense of addressing the vehicle kinematic and dynamic constraints only locally. The proposed scheme uses rectangular multiresolution cell decompositions, efficiently generated using the wavelet transform. The wavelet transform is widely used in signal and image processing, with emerging applications in autonomous sensing and perception systems. The proposed motion planner enables the simultaneous use of the wavelet transform in both the perception and in the motion-planning layers of vehicle autonomy, thus potentially reducing online computations. We rigorously prove the completeness of the proposed path-planning scheme, and we provide numerical simulation results to illustrate its efficacy.


Subject(s)
Algorithms , Artificial Intelligence , Pattern Recognition, Automated/methods , Robotics/methods , Wavelet Analysis , Motion
SELECTION OF CITATIONS
SEARCH DETAIL
...