Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 132(18): 180601, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38759169

ABSTRACT

Qubits with predominantly erasure errors present distinctive advantages for quantum error correction (QEC) and fault-tolerant quantum computing. Logical qubits based on dual-rail encoding that exploit erasure detection have been recently proposed in superconducting circuit architectures, with either coupled transmons or cavities. Here, we implement a dual-rail qubit encoded in a compact, double-post superconducting cavity. Using an auxiliary transmon, we perform erasure detection on the dual-rail subspace. We characterize the behavior of the code space by a novel method to perform joint-Wigner tomography. This is based on modifying the cross-Kerr interaction between the cavity modes and the transmon. We measure an erasure rate of 3.981±0.003 (ms)^{-1} and a residual, postselected dephasing error rate up to 0.17 (ms)^{-1} within the code space. This strong hierarchy of error rates, together with the compact and hardware-efficient nature of this novel architecture, holds promise in realizing QEC schemes with enhanced thresholds and improved scaling.

2.
J Chem Theory Comput ; 19(19): 6564-6576, 2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37733472

ABSTRACT

We introduce a general method based on the operators of the Dyson-Masleev transformation to map the Hamiltonian of an arbitrary model system into the Hamiltonian of a circuit Quantum Electrodynamics (cQED) processor. Furthermore, we introduce a modular approach to programming a cQED processor with components corresponding to the mapping Hamiltonian. The method is illustrated as applied to quantum dynamics simulations of the Fenna-Matthews-Olson (FMO) complex and the spin-boson model of charge transfer. Beyond applications to molecular Hamiltonians, the mapping provides a general approach to implement any unitary operator in terms of a sequence of unitary transformations corresponding to powers of creation and annihilation operators of a single bosonic mode in a cQED processor.

3.
Nano Lett ; 18(7): 4136-4140, 2018 07 11.
Article in English | MEDLINE | ID: mdl-29921119

ABSTRACT

We demonstrate that localized excitons in luminescent carbon nanotubes can be utilized to study electrostatic fluctuations in the nanotube environment with sensitivity down to the elementary charge. By monitoring the temporal evolution of the cryogenic photoluminescence from individual carbon nanotubes grown on silicon oxide and hexagonal boron nitride, we characterize the dynamics of charge trap defects for both dielectric supports. We find a one order of magnitude reduction in the photoluminescence spectral wandering for nanotubes on extended atomically flat terraces of hexagonal boron nitride. For nanotubes on hexagonal boron nitride with pronounced spectral fluctuations, our analysis suggests proximity to terrace ridges where charge fluctuators agglomerate to exhibit areal densities exceeding those of silicon oxide. Our results establish carbon nanotubes as sensitive probes of environmental charge fluctuations and highlight their potential for applications in electrometric nanodevices with all-optical readout.

4.
Nano Lett ; 16(8): 5102-8, 2016 08 10.
Article in English | MEDLINE | ID: mdl-27459399

ABSTRACT

Suspended monolayer transition metal dichalcogenides (TMD) are membranes that combine ultralow mass and exceptional optical properties, making them intriguing materials for opto-mechanical applications. However, the low measured quality factor of TMD resonators has been a roadblock so far. Here, we report an ultrasensitive optical readout of monolayer TMD resonators that allows us to reveal their mechanical properties at cryogenic temperatures. We find that the quality factor of monolayer WSe2 resonators greatly increases below room temperature, reaching values as high as 1.6 × 10(4) at liquid nitrogen temperature and 4.7 × 10(4) at liquid helium temperature. This surpasses the quality factor of monolayer graphene resonators with similar surface areas. Upon cooling the resonator, the resonant frequency increases significantly due to the thermal contraction of the WSe2 lattice. These measurements allow us to experimentally study the thermal expansion coefficient of WSe2 monolayers for the first time. High Q-factors are also found in resonators based on MoS2 and MoSe2 monolayers. The high quality-factor found in this work opens new possibilities for coupling mechanical vibrational states to two-dimensional excitons, valley pseudospins, and single quantum emitters and for quantum opto-mechanical experiments based on the Casimir interaction.

SELECTION OF CITATIONS
SEARCH DETAIL
...