Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 279(2): 1242-55, 2004 Jan 09.
Article in English | MEDLINE | ID: mdl-14570903

ABSTRACT

A platform for specifically modulating kinase-dependent signaling using peptides derived from the catalytic domain of the kinase is presented. This technology, termed KinAce, utilizes the canonical structure of protein kinases. The targeted regions (subdomain V and subdomains IX and X) are analyzed and their sequence, three-dimensional structure, and involvement in protein-protein interaction are highlighted. Short myristoylated peptides were derived from the target regions of the tyrosine kinases c-Kit and Lyn and the serine/threonine kinases 3-phosphoinositide-dependent kinase-1 (PDK1) and Akt/protein kinase B (PKB). For each kinase an active designer peptide is shown to selectively inhibit the signaling of the kinase from which it is derived, and to inhibit cancer cell proliferation in the micromolar range. This technology emerges as an applicable tool for deriving sequence-based selective inhibitors for a broad range of protein kinases as hits that may be further developed into drugs. Moreover, it enables identification of novel kinase targets for selected therapeutic indications as demonstrated in the KinScreen application.


Subject(s)
Drug Design , 3-Phosphoinositide-Dependent Protein Kinases , Amino Acid Sequence , Animals , Aorta/metabolism , Catalytic Domain , Cell Cycle Proteins/metabolism , Cell Division , Cell Line, Tumor , Cell-Free System , Cloning, Molecular , Cyclin-Dependent Kinase Inhibitor p27 , Cytosol/metabolism , DNA Mutational Analysis , Dose-Response Relationship, Drug , Glutathione Transferase/metabolism , Humans , Immunoblotting , Male , Mice , Mice, Inbred BALB C , Models, Molecular , Molecular Sequence Data , Myristic Acids/metabolism , Peptides/chemistry , Phosphorylation , Protein Binding , Protein Serine-Threonine Kinases/metabolism , Protein Structure, Tertiary , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins c-akt , Proto-Oncogene Proteins c-kit/metabolism , Substrate Specificity , Tumor Suppressor Proteins/metabolism , src-Family Kinases/metabolism
2.
Blood ; 102(6): 2099-107, 2003 Sep 15.
Article in English | MEDLINE | ID: mdl-12763936

ABSTRACT

The G-protein-coupled receptors of the endothelial differentiation gene (EDG) family mediate pro-angiogenic activities, such as endothelial cell proliferation, chemotaxis, and vessel morphogenesis. We synthesized and tested the effects of a 9-amino acid peptide (KRX-725), derived from the second intracellular loop of S1P3 (EDG3). KRX-725 mimics the effects of sphingosine 1-phosphate (S1P), the natural ligand of S1P3, by triggering a Gi-dependent MEK-ERK (mitogen-activated protein kinase kinase and extracellular signal-regulated kinase) signal transduction pathway. Using aortic rings as an ex vivo model of angiogenesis, vascular sprouting was assessed in the presence of KRX-725 or S1P. KRX-725 induced extensive and dense vascular sprouts, which contain an elaborated organization of endothelial and smooth muscle layers, including lumen formation. When KRX-725 or S1P was combined with proangiogenic factors, such as basic fibroblast growth factor (bFGF), stem cell factor, or vascular endothelial growth factor, the effect was synergistic, leading to further enhancement of vascular sprouting. KRX-725 also initiated neovascularization in a mouse corneal pocket assay in vivo and showed synergism with bFGF. The specificity of KRX-725 was demonstrated via peptide-induced receptor internalization of S1P3 but not S1P1. The ability of a short peptide to stimulate extensive angiogenesis and to synergize with pro-angiogenic factors suggests that KRX-725 may serve as a useful agent in treating pathologic conditions such as peripheral vascular disease, cardiac ischemia, or tissue grafts.


Subject(s)
I-kappa B Proteins/metabolism , MAP Kinase Signaling System/physiology , Neovascularization, Physiologic/physiology , Peptide Fragments/pharmacology , Animals , Aorta/cytology , Cells, Cultured , Dose-Response Relationship, Drug , Drug Synergism , Endothelial Growth Factors/pharmacology , Endothelium, Vascular/cytology , Fibroblast Growth Factor 2/pharmacology , GTP-Binding Protein alpha Subunits, Gi-Go/metabolism , Humans , I-kappa B Proteins/chemistry , I-kappa B Proteins/genetics , Intercellular Signaling Peptides and Proteins/pharmacology , Lymphokines/pharmacology , MAP Kinase Signaling System/drug effects , Mice , Mice, Inbred C57BL , Mitogen-Activated Protein Kinases/metabolism , Muscle, Smooth, Vascular/cytology , NF-KappaB Inhibitor alpha , Neovascularization, Physiologic/drug effects , Peptide Fragments/chemical synthesis , Protein Structure, Tertiary , Receptors, Lysophospholipid , Stem Cell Factor/pharmacology , Transfection , Umbilical Veins/cytology , Vascular Endothelial Growth Factor A , Vascular Endothelial Growth Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...