Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Inflam ; 2017: 6089425, 2017.
Article in English | MEDLINE | ID: mdl-28804668

ABSTRACT

Defective tissue repair and remodeling are main aspects of Chronic Obstructive Pulmonary Disease (COPD) pathophysiology. Bone marrow mesenchymal stem cells (BM-MSCs) have been implicated in this direction, as their functional impairment and recruitment could possibly contribute to disease development and progression. The present study characterizes for the first time the expression of migration related chemokine receptors and their ligands in BM-MSCs from COPD patients. CXCR4/SDF1a and CCR7/CCL19-CCL21 mRNA levels were evaluated in BM-MSCs obtained from twelve COPD patients and seven healthy donors. SDF1a protein levels in sera and BM-MSCs' conditioned media were also evaluated. CXCR4, SDF1a, CCL19, and CCL21 mRNA levels were significantly reduced in COPD BM-MSCs while CCR7 levels were undetectable. Notably, SDF1a protein levels were marginally elevated in both patient sera and BM-MSCs' conditioned media while the increase in SDF1a serum levels significantly correlated with disease severity in COPD. Our findings show posttranscriptional regulation of SDF1a levels in BM-MSCs of COPD patients and significant downregulation of SDF1a and CXCR4 mRNA indicating an involvement of the SDF1a signaling pathway in the disease pathophysiology.

2.
Virus Res ; 123(1): 40-9, 2007 Jan.
Article in English | MEDLINE | ID: mdl-16989918

ABSTRACT

We report the construction of two HSV-1 recombinants encoding chimeric forms of the E2 glycoprotein of HCV-1a composed of the ectodomain of E2 (aa384-611 or 384-711) fused to different parts of the transmembrane and cytoplasmic domain of the HSV-1 gC glycoprotein (gC). The parental HSV-1, known as KgBpK(-)gC(-), is deleted for gC and the main heparan sulphate (HS) binding domain of gB, and it exhibits impaired binding (ca. 80%) to HS compared to the wild type virus KOS [Laquerre, S., Argnani, R., Anderson, D.B., Zucchini, S., Manservigi, R., Glorioso, J.C., 1998. Heparan sulphate proteoglycan binding by herpes simplex virus type 1 glycoproteins B and C, which differ in their contributions to virus attachment, penetration, and cell-to-cell spread. J. Virol. 72, 6119-6130]. We show that gC:E2 proteins are efficiently expressed and transported to the cell surface. We also demonstrate that HSV-1 can incorporate both gC:E2 chimeric proteins into particles and show that incorporation of both chimeric molecules in the viral envelope partially restored binding (ca. 20%) of the HSV-1 recombinants to heparan sulphate. Finally, we showed that the gC:E2ScaI chimeric glycoprotein was able to bind a recombinant form of hCD81 and virion-expressed gC:E2ScaI permitted the binding of the HSV-1 recombinant virus to the hCD81 molecule.


Subject(s)
Herpesvirus 1, Human/physiology , Reassortant Viruses/physiology , Viral Envelope Proteins/biosynthesis , Animals , Antigens, CD/metabolism , Cell Line , Chlorocebus aethiops , Humans , Protein Structure, Tertiary , Receptors, Virus/metabolism , Recombinant Proteins/biosynthesis , Tetraspanin 28 , Vero Cells , Viral Envelope Proteins/chemistry , Viral Envelope Proteins/genetics , Virus Replication
3.
J Gen Virol ; 84(Pt 3): 545-554, 2003 Mar.
Article in English | MEDLINE | ID: mdl-12604804

ABSTRACT

A replication-defective herpes simplex virus type 1 (HSV-1) recombinant lacking the glycoprotein H (gH)-encoding gene and expressing a truncated form of the hepatitis C (HCV) E2 glycoprotein (E2-661) was constructed and characterized. We show here that cells infected with the HSV/HCV recombinant virus efficiently express the HCV E2-661 protein. Most importantly, cellular and secreted E2-661 protein were both readily detected by the E2-conformational mAb H53 and despite the high expression levels, only limited amounts of misfolded aggregates were detected in either the cellular or secreted fractions. Furthermore, cell-associated and secreted E2-661 protein bound to the major extracellular loop (MEL) of CD81 in a concentration-dependent manner and both were highly reactive with sera from HCV-infected patients. Finally, BALB/c mice immunized intraperitoneally with the recombinant HSV/HCV virus induced high levels of anti-E2 antibodies. Analysis of the induced immunoglobulin G (IgG) isotypes showed high levels of IgG2a while the levels of the IgG1 isotype were significantly lower, suggesting a Th1-type of response. We conclude that the HSV-1 recombinant virus represents a promising tool for production of non-aggregated, immunologically active forms of the E2-661 protein and might have potential applications in vaccine development.


Subject(s)
Hepatitis C Antibodies/analysis , Hepatitis C Antigens/genetics , Hepatitis C Antigens/immunology , Simplexvirus/genetics , Viral Envelope Proteins/genetics , Viral Envelope Proteins/immunology , Adolescent , Adult , Aged , Animals , Cell Line , Female , Hepatitis C Antibodies/blood , Hepatitis C Antigens/biosynthesis , Hepatitis C, Chronic/blood , Hepatitis C, Chronic/prevention & control , Humans , Immunoenzyme Techniques , Immunoglobulin G/analysis , Male , Mice , Mice, Inbred BALB C , Middle Aged , Protein Engineering , Recombinant Proteins/biosynthesis , Simplexvirus/metabolism , Transfection , Vaccination , Viral Envelope Proteins/biosynthesis , Viral Envelope Proteins/deficiency
SELECTION OF CITATIONS
SEARCH DETAIL
...