Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biomolecules ; 12(2)2022 02 15.
Article in English | MEDLINE | ID: mdl-35204809

ABSTRACT

Protein-based carriers are promising vehicles for the intracellular delivery of therapeutics. In this study, we designed and studied adenovirus protein fiber constructs with potential applications as carriers for the delivery of protein and nanoparticle cargoes. We used as a basic structural framework the fibrous shaft segment of the adenovirus fiber protein comprising of residues 61-392, connected to the fibritin foldon trimerization motif at the C-terminal end. A fourteen-amino-acid biotinylation sequence was inserted immediately after the N-terminal, His-tagged end of the construct in order to enable the attachment of a biotin moiety in vivo. We report herein that this His-tag biotinylated construct folds into thermally and protease-stable fibrous nanorods that can be internalized into cells and are not cytotoxic. Moreover, they can bind to proteins and nanoparticles through the biotin-streptavidin interaction and mediate their delivery to cells. We demonstrate that streptavidin-conjugated gold nanoparticles can be transported into NIH3T3 fibroblast and HeLa cancer cell lines. Furthermore, two streptavidin-conjugated model proteins, alkaline phosphatase and horseradish peroxidase can be delivered into the cell cytoplasm in their enzymatically active form. This work is aimed at establishing the proof-of-principle for the rational engineering of diverse functionalities onto the initial protein structural framework and the use of adenovirus fiber-based proteins as nanorods for the delivery of nanoparticles and model proteins. These constructs could constitute a stepping stone for the development of multifunctional and modular fibrous nanorod platforms that can be tailored to applications at the sequence level.


Subject(s)
Nanoparticle Drug Delivery System , Viral Proteins , Adenoviridae/chemistry , Animals , Biotin/chemistry , Biotin/metabolism , Gold/chemistry , HeLa Cells , Humans , Metal Nanoparticles/chemistry , Mice , NIH 3T3 Cells , Streptavidin/chemistry , Viral Proteins/chemistry
2.
Materials (Basel) ; 14(18)2021 Sep 17.
Article in English | MEDLINE | ID: mdl-34576609

ABSTRACT

Reversine or 2-(4-morpholinoanilino)-N6-cyclohexyladenine was originally identified as a small organic molecule that induces dedifferentiation of lineage-committed mouse myoblasts, C2C12, and redirects them into lipocytes or osteoblasts under lineage-specific conditions (LISCs). Further, it was proven that this small molecule can induce cell cycle arrest and apoptosis and thus selectively lead cancer cells to cell death. Further studies demonstrated that reversine, and more specifically the C2 position of the purine ring, can tolerate a wide range of substitutions without activity loss. In this study, a piperazine analog of reversine, also known as aza-reversine, and a biotinylated derivative of aza-reversine were synthesized, and their potential medical applications were investigated by transforming the endoderm originates fetal lung cells (MRC-5) into the mesoderm originated osteoblasts and by differentiating mesenchymal cells into osteoblasts. Moreover, the reprogramming capacity of aza-reversine and biotinylated aza-reversine was investigated against MRC-5 cells and mesenchymal cells after the immobilization on PMMA/HEMA polymeric surfaces. The results showed that both aza-reversine and the biofunctionalized, biotinylated analog induced the reprogramming of MRC-5 cells to a more primitive, pluripotent state and can further transform them into osteoblasts under osteogenic culture conditions. These molecules also induced the differentiation of dental and adipose mesenchymal cells to osteoblasts. Thus, the possibility to load a small molecule with useful "information" for delivering that into specific cell targets opens new therapeutic personalized applications.

3.
J Inorg Biochem ; 117: 25-34, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23078772

ABSTRACT

The synthesis of eight mixed-ligand cobalt(II) complexes with 2,2'-dipyridylamine (dpamH) and substituted salicylaldehydes (X-saloH) was undertaken in an effort to discover new compounds with anticancer activity. The complexes with the general formula [Co(dpamH)(2)(X-salo)]Y, (Y=Br or Cl) were characterized by elemental analyses, FT-IR and UV-visible spectroscopy, magnetic and conductivity measurements. The structures of two of them [Co(dpamH)(2)(5-CH(3)-salo)]Br and [Co(dpamH)(2)(3-OCH(3)-salo)]Cl, as well as of the precursors [Co(dpamH)(3)]Br(2) and [Co(dpamH)(2)Cl(H(2)O)]Cl, were determined by X-ray crystallography revealing octahedral coordination of cobalt(II) and mononuclear complexes. The complexes were thermally stable up to 200 °C in nitrogen atmosphere, studied by simultaneous TG/DTG-DTA technique. The two precursor Co compounds, as well as four of the title compounds, were evaluated for their efficacy as anticancer agents against different cancer and normal human cell lines. The in vitro chemosensitivity of various human cell lines to these Co complexes was evaluated by measuring cell growth inhibition by employing the SRB colorimetric assay. A series of experiments showed a dose-dependent cytotoxic activity of the complexes against all cell lines used. These findings represent a prompting to search for possible interaction of these complexes with other cellular elements of fundamental importance in cell proliferation.


Subject(s)
2,2'-Dipyridyl/analogs & derivatives , Aldehydes/chemistry , Antineoplastic Agents/chemical synthesis , Cobalt/chemistry , Coordination Complexes/chemical synthesis , 2,2'-Dipyridyl/chemical synthesis , 2,2'-Dipyridyl/chemistry , 2,2'-Dipyridyl/pharmacology , Aldehydes/chemical synthesis , Aldehydes/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Proliferation , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Crystallography, X-Ray , Drug Screening Assays, Antitumor , HeLa Cells , Humans , Ligands
SELECTION OF CITATIONS
SEARCH DETAIL
...