Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Polymers (Basel) ; 16(4)2024 Feb 18.
Article in English | MEDLINE | ID: mdl-38399932

ABSTRACT

CO2 capture, applied in CO2 separation from natural gas or in CO2/N2 separation from power plant flue gas streams, is of great importance for technical, economic, and environmental reasons. The latter seems important because CO2, as a greenhouse gas, is considered the main contributor to global warming. Using polymeric membranes for CO2 separation presents several advantages, such as low energy demand, small equipment volume, and the absence of liquid waste. In this study, two ionic liquids (ILs) were used for the preparation of cellulose acetate (CA)-IL blend membranes for potential CO2 capture applications, namely, 1-butyl-3-methylimidazolium hydrogen sulfate ([Bmim+][HSO4-]) and choline glycine ([Ch+]Gly-), as they present adequate CO2 dissolution ability. The first IL is commercially available, whereas the latter was synthesized by a novel route. Several composite membranes were prepared through the solvent casting technique and characterized by a variety of methods, including thermogravimetry, calorimetry, FTIR spectroscopy, and X-ray diffraction. The CO2 sorption in the composite membranes was experimentally measured using the mass loss analysis (MLA) technique. The results showed that the ILs strongly interacted with the C=O groups of CA, which exhibited high affinity with CO2. In the case of [Bmim+][HSO4-], a reduction in the available sites that allow strong intermolecular interactions with CO2 resulted in a decrease in CO2 sorption compared to that of pure CA. In the case of [Ch+]Gly-, the reduction was balanced out by the presence of specific groups in the IL, which presented high affinity with CO2. Thus, the CA-[Ch+]Gly- blend membranes exhibited increased CO2 sorption capability, in addition to other advantages such as non-toxicity and low cost.

2.
Nanomaterials (Basel) ; 14(2)2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38276741

ABSTRACT

In this study, the mechanical properties and thermal stability of composite polypropylene (PP) drawn fibers with two different organically modified montmorillonites were experimentally investigated and optimized using a response surface methodology. Specifically, the Box-Behnken Design of Experiments method was used in order to investigate the effect of the filler content, the compatibilizer content, and the drawing temperature on the tensile strength and the onset decomposition temperature of the PP composite drawn fibers. The materials were characterized by tensile tests, thermogravimetry, and X-ray diffraction. Two types of composites were investigated with the only difference being the type of filler, namely, Cloisite® 10A or Cloisite® 15A. In both cases, statistically significant models were obtained regarding the effect of design variables on tensile strength, while poor significance was observed for the onset decomposition temperature. Nanocomposite fibers with tensile strength up to 540 MPa were obtained. Among the design variables, the drawing temperature exhibited the most notable effect on tensile strength, while the effect of both clays was not significant.

3.
Polymers (Basel) ; 15(14)2023 Jul 08.
Article in English | MEDLINE | ID: mdl-37514376

ABSTRACT

Polypropylene (PP) is one of the most commercially used thermoplastics, while a significant amount of PP is used in the form of fibers. In this study, the effects of modification of the filler on the thermal and mechanical properties of composite polypropylene/wollastonite drawn fibers were investigated. In this direction, the surface modification of wollastonite with various organic acids, such as myristic, maleic, malonic glutaric, pimelic, and suberic acid, and the use of two solvents were studied. The surface-modified wollastonite particles were used to produce composite polypropylene drawn fibers. The modification efficiency was found to be slightly better when a non-polar solvent (carbon tetrachloride) was used instead of a polar one (ethanol). FTIR experiments showed that myristic, maleic, malonic, and pimelic acid can strongly interact with wollastonite's surface. However, the mechanical strength of the composite fibers was not increased compared to that of the neat PP fibers, suggesting inadequate interactions between PP and wollastonite particles. Furthermore, it was observed that the drawing process increased around 10% the crystallinity of all samples. Wollastonite modified with malonic acid acted as a nucleating agent for ß-crystals. The onset decomposition temperature increased by 5-10 °C for all samples containing 2% wollastonite, either modified or not. The suggested modifications of wollastonite might be more suitable for less hydrophobic polymers.

4.
Polymers (Basel) ; 15(8)2023 Apr 11.
Article in English | MEDLINE | ID: mdl-37111990

ABSTRACT

Evaluation and understanding of the thermal behavior of polymers is crucial for many applications, e.g., polymer processing at relatively high temperatures, and for evaluating polymer-polymer miscibility. In this study, the differences in the thermal behavior of poly(vinyl alcohol) (PVA) raw powder and physically crosslinked films were investigated using various methods, such as thermogravimetric analysis (TGA) and derivative TGA (DTGA), differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). Various strategies were adopted, e.g., film casting from PVA solutions in H2O and D2O and heating of samples at carefully selected temperatures, in order to provide insights about the structure-properties relationship. It was found that the physically crosslinked PVA film presents an increased number of hydrogen bonds and increased thermal stability/slower decomposition rate compared to the PVA raw powder. This is also depicted in the estimated values of specific heat of thermochemical transition. The first thermochemical transition (glass transition) of PVA film, as for the raw powder, overlaps with mass loss from multiple origins. Evidence for minor decomposition that occurs along with impurities removal is presented. The overlapping of various effects (softening, decomposition, and evaporation of impurities) has led to confusion and apparent consistencies, e.g., from the XRD, it is derived that the film has decreased crystallinity, and apparently this is in agreement with the lower value of heat of fusion. However, the heat of fusion in this particular case has a questionable meaning.

5.
Molecules ; 27(19)2022 Sep 26.
Article in English | MEDLINE | ID: mdl-36234879

ABSTRACT

Silybin is a complex organic molecule with high bioactivity, extracted from the plant Silybum. As a pharmaceutical substance, silybin's bioactivity has drawn considerable attention, while its other properties, e.g., thermodynamic properties and thermal stability, have been less studied. Silybin has been reported to exhibit a melting point, and values for its heat of fusion have been provided. In this work, differential scanning calorimetry, thermogravimetry including derivative thermogravimetry, infrared spectroscopy, and microscopy were used to provide evidence that silybin exhibits a thermochemical transition, i.e., softening occurring simultaneously with decomposition. Data from the available literature in combination with critical discussion of the results in a general framework suggest that thermochemical transition is a broad effect exhibited by various forms of matter (small molecules, macromolecules, natural, synthetic, organic, inorganic). The increased formation of hydrogen bonding contributes to this behavior through a dual influence: (a) inhibition of melting and (b) facilitation of decomposition due to weakening of chemical bonds.


Subject(s)
Flavonoids , Calorimetry, Differential Scanning , Molecular Weight , Pharmaceutical Preparations , Silybin
6.
Molecules ; 27(19)2022 Oct 06.
Article in English | MEDLINE | ID: mdl-36235166

ABSTRACT

The thermodynamic properties of pharmaceuticals are of major importance since they are involved in drug design, processing, optimization and modelling. In this study, a long-standing confusion regarding the thermodynamic properties of flavonoids and similar pharmaceuticals is recognized and clarified. As a case study, the thermal behavior of quercetin is examined with various techniques. It is shown that quercetin does not exhibit glass transition nor a melting point, but on the contrary, it does exhibit various thermochemical transitions (structural relaxation occurring simultaneously with decomposition). Inevitably, the physical meaning of the reported experimental values of the thermodynamic properties, such as the heat of fusion and heat capacity, are questioned. The discussion for this behavior is focused on the weakening of the chemical bonds. The interpretations along with the literature data suggest that the thermochemical transition might be exhibited by various flavonoids and other similar pharmaceuticals, and is related to the difficulty in the prediction/modelling of their melting point.


Subject(s)
Flavonoids , Quercetin , Pharmaceutical Preparations , Thermodynamics
7.
Molecules ; 27(18)2022 Sep 07.
Article in English | MEDLINE | ID: mdl-36144520

ABSTRACT

The CPA equation of state is applied to model binary, ternary, and multicomponent mixtures that contain CO2 with polyethylene glycols or compounds relevant to biodiesel production, such as glycerol and various triglycerides. Effort has been made to evaluate the model performance on correlating both the liquid and the vapor phase compositions, which is a demanding task, revealing the model's and parameters' limitations, due to the rather low concentrations of heavy compounds in the vapor phase. Initially the model's binary parameters, which in all cases were temperature independent, were estimated using experimental data for binary systems. Those parameters were used to predict the phase behavior of supercritical CO2 containing ternary and multicomponent mixtures. Since no parameter was adjusted to ternary or multicomponent systems' data, the reported CPA results for such mixtures are considered as pure predictions. This is the final part of a series of studies [Tsivintzelis et al. Fluid Phase Equilibria 430 (2016) 75-92 and 504 (2020) 112337] that complete the parameterization of the CPA equation of state for systems relevant to the biodiesel production, which allows the application of the model to multicomponent mixtures of the relevant processes.


Subject(s)
Biofuels , Polyethylene Glycols , Carbon Dioxide , Glycerol , Triglycerides
8.
Polymers (Basel) ; 14(16)2022 Aug 22.
Article in English | MEDLINE | ID: mdl-36015691

ABSTRACT

Gallic acid (GA) and quercetin (QU) are two important bioactive molecules with increased biomedical interest. Cellulose acetate (CA) is a polymer derived from cellulose and is used in various applications. In this work, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and Fourier transform infrared spectroscopy (FTIR) were used to study the thermal behavior of electrospun CA membranes loaded with quercetin or gallic acid. It was found that gallic acid and quercetin depress the thermochemical transition (simultaneous softening and decomposition) of CA, in a mechanism similar to that of the glass transition depression of amorphous polymers by plasticizers. The extensive hydrogen bonding, besides the well-known effect of constraining polymer's softening by keeping macromolecules close to each other, has a secondary effect on the thermochemical transition, i.e., it weakens chemical bonds and, inevitably, facilitates decomposition. This second effect of hydrogen bonding can provide an explanation for an unexpected observation of this study: CA membranes loaded with quercetin or gallic acid soften at lower temperatures; however, at the same time, they decompose to a higher extent than pure CA. Besides optimization of CA processing, the fundamental understanding of the thermochemical transition depression could lead to the design of more sustainable processes for biomass recycling and conversion.

9.
Polymers (Basel) ; 14(7)2022 Mar 25.
Article in English | MEDLINE | ID: mdl-35406204

ABSTRACT

A large portion of the produced Polypropylene (PP) is used in the form of fibers. In this industrially oriented study, the development of composite PP drawn fibers was investigated. Two types of fillers were used (ultra-fine talc and single-wall carbon nanotubes). Optimization of the thermal and mechanical properties of the produced composite drawn fibers was performed, based on the Box-Behnken design of experiments method (surface response analysis). The effect of additives, other than the filler, but typical in industrial applications, such as an antioxidant and a common compatibilizer, was investigated. The drawing ratio, the filler, and the compatibilizer or the antioxidant content were selected as design variables, whereas the tensile strength and the onset decomposition temperature were set as response variables. Fibers with very high tensile strength (up to 806 MPa) were obtained. The results revealed that the maximization of both the tensile strength and the thermal stability was not feasible for composites with talc due to multiple interactions among the used additives (antioxidant, compatibilizer, and filler). Additionally, it was found that the addition of talc in the studied particle size improved the mechanical strength of fibers only if low drawing ratios were used. On the other hand, the optimization targeting maximization of both tensile strength and thermal stability was feasible in the case of SWCNT composite fibers. It was found that the addition of carbon nanotubes improved the tensile strength; however, such improvement was rather small compared with the tremendous increase of tensile strength due to drawing.

10.
Polymers (Basel) ; 14(5)2022 Feb 25.
Article in English | MEDLINE | ID: mdl-35267749

ABSTRACT

The thermal and mechanical properties of polypropylene-wollastonite composite drawn fibers were optimized via experiments selected with the Box-Behnken approach. The drawing ratio, the filler and the compatibilizer content were chosen as design variables, while the tensile strength, the melting enthalpy and the onset decomposition temperature were set as response variables. Drawn fibers with tensile strength up to 535 MPa were obtained. Results revealed that the drawing ratio is the most important factor for the enhancement of tensile strength, followed by the filler content. All the design variables slightly affected the melting temperature and the crystallinity of the matrix. Also, it was found that the addition of polypropylene grafted with maleic anhydride as compatibilizer has a multiple effect on the final properties, i.e., it induces the dispersion of both the antioxidant and the filler, tending to increase thermal stability and tensile strength, while, on the same time, deteriorates mechanical and thermal properties due to its lower molecular weight and thermal stability. Such behavior does not allow for simultaneous maximization of thermal stability and tensile strength. Optimization based on a compromise, i.e., targeting maximization of tensile strength and onset decomposition temperature higher than 300 °C, yields high desirability values and predictions in excellent agreement with verification experiments.

11.
Chemosphere ; 297: 133989, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35181421

ABSTRACT

The present work was conducted to assess whether the implementation of Supercritical Carbon dioxide Explosion (SCE) is an efficient approach for sewage sludge pre-treatment. In this context, SCE was optimized with the aim to develop a method attempting to increase the biodegradability of sewage sludge's organic matter content, and thus, to enhance the subsequent anaerobic digestion and methane production. The statistical tool of response surface methodology was applied to evaluate the effects of the main pre-treatment parameters (i.e. temperature and time) and their interactions on methane yield, which was defined as the response. Temperature was found to be the most significant variable, having the greatest effect on methane yield. Following this, an optimum set of pre-treatment conditions corresponding to a temperature of 115 °C and time of 13 min, was determined. Under these optimum conditions, the predicted response value was 300 mL CH4/g of volatile solids. The corresponding experimental value obtained from the validation experiment fitted well with this value, clearly demonstrating the effective use of response surface methodology in optimizing SCE. Additionally, under optimum conditions, the methane yield presented a statistically significant increment of 8.7%, compared to untreated sludge. This revealed the impact of SCE as an effective and alternative way for the efficient pre-treatment of sewage sludge. Finally, thermal pre-treatment, alkaline and acidic hydrolysis were also applied to the already pre-treated sludge. It was concluded that the combined pre-treatment techniques contributed to a further increase of methane production compared to raw (untreated) substrate.


Subject(s)
Carbon Dioxide , Sewage , Anaerobiosis , Bioreactors , Explosions , Methane , Sewage/chemistry
12.
Polymers (Basel) ; 14(2)2022 Jan 09.
Article in English | MEDLINE | ID: mdl-35054667

ABSTRACT

Isotactic polypropylene (PP) composite drawn fibers were prepared using melt extrusion and high-temperature solid-state drawing at a draw ratio of 7. Five different fillers were used as reinforcement agents (microtalc, ultrafine talc, wollastonite, attapulgite and single-wall carbon nanotubes). In all the prepared samples, antioxidant was added, while all samples were prepared with and without using PP grafted with maleic anhydride as compatibilizer. Material characterization was performed by tensile tests, differential scanning calorimetry, thermogravimetric analysis and Fourier transform infrared spectroscopy. Attapulgite composite fibers exhibited poor results in terms of tensile strength and thermal stability. The use of ultrafine talc particles yields better results, in terms of thermal stability and tensile strength, compared to microtalc. Better results were observed using needle-like fillers, such as wollastonite and single-wall carbon nanotubes, since, as was previously observed, high aspect ratio particles tend to align during the drawing process and, thus, contribute to a more symmetrical distribution of stresses. Competitive and synergistic effects were recognized to occur among the additives and fillers, such as the antioxidant effect being enhanced by the addition of the compatibilizer, while the antioxidant itself acts as a compatibilizing agent.

13.
Regen Biomater ; 8(3): rbab011, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34211727

ABSTRACT

The aim of this study was to investigate the potential of novel electrospun fiber mats loaded with alkannin and shikonin (A/S) derivatives, using as carrier a highly biocompatible, bio-derived, eco-friendly polymer such as poly[(R)-3-hydroxybutyric acid] (PHB). PHB fibers containing a mixture of A/S derivatives at different ratios were successfully fabricated via electrospinning. Αs evidenced by scanning electron microscopy, the fibers formed a bead-free mesh with average diameters from 1.25 to 1.47 µm. Spectroscopic measurements suggest that electrospinning marginally increases the amorphous content of the predominantly crystalline PHB in the fibers, while a significant drug amount lies near the fiber surface for samples of high total A/S content. All scaffolds displayed satisfactory characteristics, with the lower concentrations of A/S mixture-loaded PHB fiber mats achieving higher porosity, water uptake ratios, and entrapment efficiencies. The in vitro dissolution studies revealed that all samples released more than 70% of the encapsulated drug after 72 h. All PHB scaffolds tested by cell viability assay were proven non-toxic for Hs27 fibroblasts, with the 0.15 wt.% sample favoring cell attachment, spreading onto the scaffold surface, as well as cell proliferation. Finally, the antimicrobial activity of PHB meshes loaded with A/S mixture was documented for Staphylococcus epidermidis and S. aureus.

14.
Biomater Res ; 25(1): 23, 2021 Jul 16.
Article in English | MEDLINE | ID: mdl-34271983

ABSTRACT

BACKGROUND: Current research on skin tissue engineering has been focusing on novel therapies for the effective management of chronic wounds. A critical aspect is to develop matrices that promote growth and uniform distribution of cells across the wound area, and at the same time offer protection, as well as deliver drugs that help wound healing and tissue regeneration. In this context, we aimed at developing electrospun scaffolds that could serve as carriers for the bioactive natural products alkannin and shikonin (A/S). METHODS: A series of polymeric nanofibers composed of cellulose acetate (CA) or poly(ε-caprolactone) (PCL) and varying ratios of a mixture of A/S derivatives, has been successfully fabricated and their physico-chemical and biological properties have been explored. RESULTS: Scanning electron microscopy revealed a uniform and bead-free morphology for CA scaffolds, while for PCL beads along the fibers were observed. The average diameters for all nanofibers ranged between 361 ± 47 and 487 ± 88 nm. During the assessment of physicochemical characteristics, CA fiber mats exhibited a more favored profile, while the assessment of the biological properties of the scaffolds showed that CA samples containing A/S mixture up to 1 wt.% achieved to facilitate attachment, survival and migration of Hs27 fibroblasts. With respect to the antimicrobial properties of the scaffolds, higher drug-loaded (1 and 5 wt.%) samples succeeded in inhibiting the growth of Staphylococcus epidermidis and S. aureus around the edges of the fiber mats. Finally, carrying out a structure-activity relationship study regarding the biological activities (fibroblast toxicity/proliferation and antibacterial activity) of pure A/S compounds - present in the A/S mixture - we concluded that A/S ester derivatives and the dimeric A/S augmented cell proliferation after 3 days, whereas shikonin proved to be toxic at 500 nM and 1 µM and alkannin only at 1 µM. Additionally, alkannin, shikonin and acetyl-shikonin showed more pronounced antibacterial properties than the other esters, the dimeric derivative and the A/S mixture itself. CONCLUSIONS: Taken together, these findings indicate that embedding A/S derivatives into CA nanofibers might be an advantageous drug delivery system that could also serve as a potential candidate for biomedical applications in the field of skin tissue engineering.

15.
J Phys Chem B ; 121(9): 2153-2163, 2017 03 09.
Article in English | MEDLINE | ID: mdl-28195480

ABSTRACT

The association term of the nonrandom hydrogen bonding theory, which is an equation of state model, is extended to describe the dimerization of carboxylic acids in binary mixtures with inert solvents and in systems of two different acids. Subsequently, the model is applied to describe the excess enthalpies and the vapor-liquid equilibrium of relevant binary mixtures containing low molecular weight organic acids. The model sheds light on the interplay of intermolecular interactions through the calculation of the various contributions to the mixing enthalpies, namely from hydrogen bonding and non-hydrogen bonding (dipolar, induced polar or dispersive) interactions. According to model predictions, the acid molecules are so strongly associated that the addition of inert solvents to carboxylic acids with small carbon numbers at ambient temperature does not dramatically alter their degree of association. Consequently, the observed endothermic dissolution process is mainly attributed to the hindering of polar interactions. Furthermore, upon mixing of two carboxylic acids, the rearrangement of hydrogen bonds due to the formation of cross associating species results in an insignificant contribution to the heats of mixing due to the rather constant dimerization enthalpy that is revealed by the available experimental data for low molecular weight compounds.

16.
Int J Pharm ; 409(1-2): 216-28, 2011 May 16.
Article in English | MEDLINE | ID: mdl-21316431

ABSTRACT

Alkannin, shikonin (A/S) and their derivatives are naturally occurring hydroxynaphthoquinones with a well-established spectrum of wound healing, antimicrobial, anti-inflammatory, antioxidant and antitumor activity. Clinical studies over the years revealed that A/S derivatives-based wound healing preparations (such as HELIXDERM(®)) are among a very small group of therapeutics that modulate both the inflammatory and proliferative phases of wound healing and present significant tissue regenerative activity. The purpose of the present work was to combine the biological properties of A/S and the advantages of electrospun meshes to prepare a potent topical/transdermal biomaterial for A/S. Four biocompatible polymers (cellulose acetate, poly(L-lactide), poly(lactide-co-glycolide) LA/GA:50/50 and 75/25) were used for the first time, to produce electrospun fiber mats containing either shikonin or A/S mixture in various amounts. Both drugs were effectively loaded into the above biomaterials. The incorporation of drugs did not considerably affect fibers morphology and their mean diameter size varied from 315 to 670 nm. High drug entrapment efficiencies (ranged from 74% to 95%) and appropriate release profiles were achieved, that render these fibers as potential A/S topical/transdermal wound healing dressings. Given the multifunctional activity of the natural products alkannins and shikonins, their consideration as bioactive constituents for tissue engineering scaffolds seems a promising strategy for repairing and regenerating tissues and mainly skin.


Subject(s)
Electrochemical Techniques , Naphthoquinones/administration & dosage , Polymers/chemistry , Administration, Cutaneous , Bandages , Cellulose/analogs & derivatives , Cellulose/chemistry , Drug Combinations , Drugs, Chinese Herbal/administration & dosage , Excipients/chemistry , Humans , Lactic Acid/chemistry , Polyesters/chemistry , Polyglycolic Acid/chemistry , Polylactic Acid-Polyglycolic Acid Copolymer , Wound Healing/drug effects
17.
Phys Chem Chem Phys ; 12(18): 4843-51, 2010 May 14.
Article in English | MEDLINE | ID: mdl-20428567

ABSTRACT

A non-electrolyte equation-of-state model was used to describe the phase behavior of binary systems containing alkyl-methyimidazolium bis(trifluoromethyl-sulfonyl)imide ionic liquids. A methodology is suggested for modeling this phase behavior by using the Non-Random Hydrogen-Bonding (NRHB) model. According to this methodology, the scaling constants of the ionic liquid are calculated using limited available experimental data on liquid densities and Hansen's solubility parameters, while all electrostatic interactions (polar, hydrogen bonding and ionic) are treated as strong specific interactions. Using the aforementioned methodology, the model is applied to describe the vapor-liquid and the liquid-liquid equilibria in mixtures of ionic liquids with various polar or quadrupolar solvents at low and high pressures. In all cases, one temperature-independent binary interaction parameter was used. Accurate correlations were obtained for the majority of the systems, both, for vapor-liquid and liquid-liquid equilibria.

18.
J Phys Chem B ; 113(18): 6446-58, 2009 May 07.
Article in English | MEDLINE | ID: mdl-19368360

ABSTRACT

The concept of solubility parameter, which is widely used for the screening of solvents in pharmaceutical applications, is combined with a thermodynamic theory that is able to model systems with large deviations from ideal behavior. The nonrandom hydrogen-bonding (NRHB) theory is applied to model the phase behavior of mixtures of six pharmaceuticals (i.e., ibuprofen, ketoprofen, naproxen, benzoic acid, methyl paraben, and ethyl paraben). The pure fluid parameters of the studied pharmaceuticals were estimated using limited available experimental (or predicted) data on sublimation pressures, liquid densities, and Hansen's solubility parameters. The complex hydrogen-bonding behavior was explicitly accounted for, while the corresponding parameters were adopted from simpler molecules of similar chemical structure or/and fitted to the aforementioned pure fluid properties. In this way, the solubility of the studied pharmaceuticals in liquid solvents was calculated. The average root-mean-square deviation between experimental and calculated solubilities is 0.190 and 0.037 in log(10) units for prediction (calculations without a binary interaction parameter adjustment) and for correlation (calculations using one binary interaction parameter fitted to experimental data), respectively. In addition, using one temperature-independent binary interaction parameter the phase behavior of pharmaceuticals in supercritical CO(2) and ethane was satisfactorily correlated. Finally, preliminary encouraging results are shown concerning two ternary mixtures where the model is able to predict accurately the solubility of pharmaceuticals in mixed solvents based on interaction parameters fitted to corresponding single solvent data.


Subject(s)
Pharmaceutical Preparations/chemistry , Solvents/chemistry , Hydrogen Bonding , Solubility
19.
Acta Biomater ; 4(3): 756-65, 2008 May.
Article in English | MEDLINE | ID: mdl-18294944

ABSTRACT

Polymer nanocomposites, based on poly(e-caprolactone) (PCL) and organically modified montmorillonite, were prepared by the solution intercalation technique. The thermal stability of the prepared materials was analyzed by thermogravimetric analysis. Investigation of their mechanical properties revealed that incorporation of the high aspect ratio montmorillonite sheets into the matrix significantly enhanced the polymer stiffness without sacrificing its ductility. Fibrous membranes of neat and nanocomposite PCL were fabricated by electrospinning. The effect of the applied voltage, the solution concentration and the clay content of the nanocomposite materials on the final fibrous structure was investigated. The results showed that the introduction of the inorganic filler and the increase in the applied voltage from 7.5 to 15 kV facilitated the formation of fine fibers with fewer bead defects. The presence of nanoclay resulted in narrower fiber size distributions, although the mean fiber diameter was not significantly altered. The increase in the solution concentration led to the formation of more uniform fiber structures and to a slight increase in the mean fiber diameter. Furthermore, the electrospinning process affected significantly the structure of the nanocomposite material by increasing the interlayer spacing of the inorganic mineral.


Subject(s)
Bentonite/chemistry , Biocompatible Materials/chemistry , Nanocomposites/chemistry , Polyesters/chemistry , Temperature , Membranes, Artificial , Solutions , Tensile Strength , Thermogravimetry , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...