Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Life (Basel) ; 12(2)2022 Feb 07.
Article in English | MEDLINE | ID: mdl-35207533

ABSTRACT

BACKGROUND: In recent years, the interest in genetic predisposition studies for coronary artery disease and restenosis has increased. Studies show that polymorphisms of genes encoding folate cycle and homocysteine metabolism enzymes significantly contribute to atherogenesis and endothelial dysfunction. The purpose of this study was to examine some SNPs of genes coding for folate cycle enzymes and DNA methyltransferases as risk factors for in-stent restenosis. METHODS: The study included 113 patients after stent implantation and 62 patients without signs of coronary artery disease at coronary angiography as the control group. Real-time PCR and RFLP-PCR were applied to genotype all participants for MTHFR rs1801133, MTHFR rs1801131, MTR rs1805087, MTRR rs1801394, DNMT1 rs8101626, DNMT3B rs1569686, and DNMT3B rs2424913 gene polymorphisms. Statistical data processing was carried out using the R language and the SPSS Statistics 20 software. RESULTS: Statistically significant differences in the DNMT3B gene polymorphisms were found between patients with and without in-stent restenosis. An association of TT rs1569686 and TT rs2424913 genotypes with the development of restenosis was revealed. The TT rs1569686 genotype was more frequent in the patients under the age of 65 years and in the subgroup of patients with post-12-month restenosis, as was the minor GG genotype for MTR rs1805087. The homozygous TT genotype for MTHFR rs1801133 was significantly more frequent in the subgroup over 65 years old. The frequencies of the heterozygous genotype for the MTRR gene and the minor GG homozygotes for the DNMT1 gene were significantly higher in the subgroup with in-stent restenosis under 65 years old. CONCLUSIONS: The results of this study could be used for a comprehensive risk assessment of ISR development, determining the optimal tactics and an individual approach in the treatment of patients with coronary artery disease before or after percutaneous coronary interventions, including homocysteine-lowering treatment in patients with hyperhomocysteinemia and a high risk of in-stent restenosis.

2.
Aging (Albany NY) ; 3(6): 584-96, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21685510

ABSTRACT

Genome stability of human embryonic stem cells (hESC) is an important issue because even minor genetic alterations can negatively impact cell functionality and safety. The incorrect repair of DNA double-stranded breaks (DSBs) is the ultimate cause of the formation of chromosomal aberrations. Using G2 radiosensitivity assay, we analyzed chromosomal aberrations in pluripotent stem cells and somatic cells. The chromatid exchange aberration rates in hESCs increased manifold 2 hours after irradiation as compared with their differentiated derivatives, but the frequency of radiation-induced chromatid breaks was similar. The rate of radiation-induced chromatid exchanges in hESCs and differentiated cells exhibited a quadratic dose response, revealing two-hit mechanism of exchange formation suggesting that a non-homologous end joining (NHEJ) repair may contribute to their formation. Inhibition of DNA-PK, a key NHEJ component, by NU7026 resulted in a significant decrease in radiation-induced chromatid exchanges in hESCs but not in somatic cells. In contrast, NU7026 treatment increased the frequency of radiation-induced breaks to a similar extent in pluripotent and somatic cells. Thus, DNA-PK dependent NHEJ efficiently participates in the elimination of radiation-induced chromatid breaks during the late G2 in both cell types and DNA-PK activity leads to a high level of misrejoining specifically in pluripotent cells.


Subject(s)
DNA Repair , G2 Phase/physiology , Pluripotent Stem Cells/physiology , Chromatids/radiation effects , Chromosome Aberrations , DNA Breaks, Double-Stranded , DNA-Activated Protein Kinase/metabolism , Dose-Response Relationship, Radiation , Humans , Pluripotent Stem Cells/cytology , Radiation, Ionizing
SELECTION OF CITATIONS
SEARCH DETAIL
...