Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 3349, 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38336991

ABSTRACT

The use of a reflector can increase the solar radiation on the photovoltaic module (PV) surface, whereby the energy output can be improved. However, the economic feasibility may need to be considered too. This study is conducted, for the first time, due to the lack of studies regarding the economic feasibility assessment of implementing reflectors under the Malaysian meteorological conditions. The outcome will give information about the suitability for implementing a PV reflector in Malaysia through an experimental setup at a sewage treatment site, for two months in 2022. The Malaysian meteorological data, which include daily solar radiation, ambient temperature and wind velocity, were collected to study the output energy, efficiency and the economic perspective of a PV. In February 2022, the PV was operating without a reflector and the averaged values for the monthly solar radiation, ambient temperature and wind velocity were 539.9 MJ/m2, 28.4 °C and 2.2 m/s, respectively, which resulted in an output energy of 106.43 kWh. On the other hand, for April 2022, the PV was operating with a reflector. With the respective averaged input parameters 544.98 MJ/m2, 28.9 °C and 1.51 m/s, the output energy was 121.94 kWh. It is thus shown that the PV with a reflector increases the PV's output energy by 14.57%. Also, it is shown that the cost-effective factor value is 0.955 which means that the PV reflector is economically feasible to be implemented under the Malaysian meteorological conditions. Hence, extensive research should be conducted to improve the performance of PV reflectors. The findings of this paper maybe useful for researchers and/or manufacturers of PV reflectors.

2.
Heliyon ; 9(11): e21294, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37885726

ABSTRACT

The photovoltaic module (PV) enhancer is a technology used for improving the PV performance. Recently, much research has been conducted to propose new concepts of PV enhancer such as coolers and reflectors. The PV enhancer performance is assessed by the common existing methods available in the literature, which solely depends on total exergy or energy, volume, area, weight and the manufacturing cost. These assessment methods are useful but cannot assess the PV enhancer's performance when considering the lifespan parameter. Hence, this study is intended to solve the current problem by linking the lifespan parameter into the existing methods by proposing three enhanced assessment methods: yield times lifespan per cost per area, yield times lifespan per cost per volume and yield times lifespan per cost per weight. The PV enhancer with the highest values of these factors will have the optimum performance. The influential parameters and limitations of the enhanced assessment methods are investigated. It is shown that the proposed methods can assess and classify the performance of the PV enhancer with different models when the lifespan is considered in the analysis. These assessment approaches can be applied by manufacturers and designers of PV enhancers.

3.
Heliyon ; 4(12): e01085, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30627676

ABSTRACT

The synovial fluid motion in an artificial hip joint is important in understanding the thermo-fluids effects that can affect the reliability of the joint, although it is difficult to be studied theoretically, as the modelling involves the viscous fluid interacting with a moving surface. A new analytical solution has been derived for the maximum induced fluid motion within a spherical gap with an oscillating lower surface and a stationary upper surface, assuming one-dimensional incompressible laminar Newtonian flow with constant properties, and using the Navier-Stokes equation. The resulting time-dependent motion is analysed in terms of two dimensionless parameters R and ß, which are functions of geometry, fluid properties and the oscillation rate. The model is then applied to the conditions of the synovial fluid enclosed in the artificial hip joint and it is found that the motion may be described by a simpler velocity variation, whereby laying the foundation to thermal studies in the joint.

4.
J Adv Res ; 7(3): 445-52, 2016 May.
Article in English | MEDLINE | ID: mdl-27222749

ABSTRACT

This paper presents analysis of thin plates with holes within the context of XFEM. New integration techniques are developed for exact geometrical representation of the holes. Numerical and exact integration techniques are presented, with some limitations for the exact integration technique. Simulation results show that the proposed techniques help to reduce the solution error, due to the exact geometrical representation of the holes and utilization of appropriate quadrature rules. Discussion on minimum order of integration order needed to achieve good accuracy and convergence for the techniques presented in this work is also included.

5.
Scanning ; 38(6): 502-514, 2016 Nov.
Article in English | MEDLINE | ID: mdl-26618491

ABSTRACT

An improvement to the existing technique of quantifying signal-to-noise ratio (SNR) of scanning electron microscope (SEM) images using piecewise cubic Hermite interpolation (PCHIP) technique is proposed. The new technique uses an adaptive tuning onto the PCHIP, and is thus named as ATPCHIP. To test its accuracy, 70 images are corrupted with noise and their autocorrelation functions are then plotted. The ATPCHIP technique is applied to estimate the uncorrupted noise-free zero offset point from a corrupted image. Three existing methods, the nearest neighborhood, first order interpolation and original PCHIP, are used to compare with the performance of the proposed ATPCHIP method, with respect to their calculated SNR values. Results show that ATPCHIP is an accurate and reliable method to estimate SNR values from SEM images. SCANNING 38:502-514, 2016. © 2015 Wiley Periodicals, Inc.

6.
J Microsc ; 258(2): 140-50, 2015 May.
Article in English | MEDLINE | ID: mdl-25676007

ABSTRACT

A new technique based on cubic spline interpolation with Savitzky-Golay smoothing using weighted least squares error filter is enhanced for scanning electron microscope (SEM) images. A diversity of sample images is captured and the performance is found to be better when compared with the moving average and the standard median filters, with respect to eliminating noise. This technique can be implemented efficiently on real-time SEM images, with all mandatory data for processing obtained from a single image. Noise in images, and particularly in SEM images, are undesirable. A new noise reduction technique, based on cubic spline interpolation with Savitzky-Golay and weighted least squares error method, is developed. We apply the combined technique to single image signal-to-noise ratio estimation and noise reduction for SEM imaging system. This autocorrelation-based technique requires image details to be correlated over a few pixels, whereas the noise is assumed to be uncorrelated from pixel to pixel. The noise component is derived from the difference between the image autocorrelation at zero offset, and the estimation of the corresponding original autocorrelation. In the few test cases involving different images, the efficiency of the developed noise reduction filter is proved to be significantly better than those obtained from the other methods. Noise can be reduced efficiently with appropriate choice of scan rate from real-time SEM images, without generating corruption or increasing scanning time.

7.
Scanning ; 36(5): 530-9, 2014.
Article in English | MEDLINE | ID: mdl-25139061

ABSTRACT

An improvement to the previously proposed adaptive Canny optimization technique for scanning electron microscope image colorization is reported. The additional feature, called pseudo-mapping technique, is that the grayscale markings are temporarily mapped to a set of pre-defined pseudo-color map as a mean to instill color information for grayscale colors in chrominance channels. This allows the presence of grayscale markings to be identified; hence optimization colorization of grayscale colors is made possible. This additional feature enhances the flexibility of scanning electron microscope image colorization by providing wider range of possible color enhancement. Furthermore, the nature of this technique also allows users to adjust the luminance intensities of selected region from the original image within certain extent.

8.
Comput Biol Med ; 49: 46-59, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24736203

ABSTRACT

A computer-aided detection auto-probing (CADAP) system is presented for detecting breast lesions using dynamic contrast enhanced magnetic resonance imaging, through a spatial-based discrete Fourier transform. The stand-alone CADAP system reduces noise, refines region of interest (ROI) automatically, and detects the breast lesion with minimal false positive detection. The lesions are then classified and colourised according to their characteristics, whether benign, suspicious or malignant. To enhance the visualisation, the entire analysed ROI is constructed into a 3-D image, so that the user can diagnose based on multiple views on the ROI. The proposed method has been applied to 101 sets of digital images, and the results compared with the biopsy results done by radiologists. The proposed scheme is able to identify breast cancer regions accurately and efficiently.


Subject(s)
Breast Neoplasms/diagnosis , Fourier Analysis , Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Adult , Aged , Breast/pathology , Breast Neoplasms/pathology , Female , Humans , Imaging, Three-Dimensional/methods , Middle Aged
9.
J Microsc ; 253(1): 1-11, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24164248

ABSTRACT

A new technique based on cubic spline interpolation with Savitzky-Golay noise reduction filtering is designed to estimate signal-to-noise ratio of scanning electron microscopy (SEM) images. This approach is found to present better result when compared with two existing techniques: nearest neighbourhood and first-order interpolation. When applied to evaluate the quality of SEM images, noise can be eliminated efficiently with optimal choice of scan rate from real-time SEM images, without generating corruption or increasing scanning time.


Subject(s)
Image Processing, Computer-Assisted/methods , Microscopy, Electron, Scanning/methods , Signal-To-Noise Ratio , Animals , Culicidae/ultrastructure , Extremities/anatomy & histology
10.
Scanning ; 35(3): 205-12, 2013.
Article in English | MEDLINE | ID: mdl-22961698

ABSTRACT

A number of techniques have been proposed during the last three decades for noise variance and signal-to-noise ratio (SNR) estimation in digital images. While some methods have shown reliability and accuracy in SNR and noise variance estimations, other methods are dependent on the nature of the images and perform well on a limited number of image types. In this article, we prove the accuracy and the efficiency of the image noise cross-correlation estimation model, vs. other existing estimators, when applied to different types of scanning electron microscope images.

11.
Scanning ; 35(2): 75-87, 2013.
Article in English | MEDLINE | ID: mdl-22777599

ABSTRACT

Detection of cracks from stainless steel pipe images is done using contrast stretching technique. The technique is based on an image filter technique through mathematical morphology that can expose the cracks. The cracks are highlighted and noise removal is done efficiently while still retaining the edges. An automated crack detection system with a camera platform has been successfully implemented. We compare crack extraction in terms of quality measures with those of Otsu's threshold technique and the another technique (Iyer and Sinha, 2005). The algorithm shown is able to achieve good results and perform better than these other techniques.

12.
J Microsc ; 248(2): 120-8, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22900970

ABSTRACT

A new technique for estimation of signal-to-noise ratio in scanning electron microscope images is reported. The method is based on the image noise cross-correlation estimation model recently developed. We derive the basic performance limits on a single image signal-to-noise ratio estimation using the Cramer-Rao inequality. The results are compared with those from existing estimation methods including the nearest neighbourhood (the simple method), the first order linear interpolator, and the autoregressive based estimator. The comparisons were made using several tests involving different images within the performance bounds. From the results obtained, the efficiency and accuracy of image noise cross-correlation estimation technique is considerably better than the other three methods.

13.
Scanning ; 33(4): 233-51, 2011.
Article in English | MEDLINE | ID: mdl-21611953

ABSTRACT

To reduce undesirable charging effects in scanning electron microscope images, Rayleigh contrast stretching is developed and employed. First, re-scaling is performed on the input image histograms with Rayleigh algorithm. Then, contrast stretching or contrast adjustment is implemented to improve the images while reducing the contrast charging artifacts. This technique has been compared to some existing histogram equalization (HE) extension techniques: recursive sub-image HE, contrast stretching dynamic HE, multipeak HE and recursive mean separate HE. Other post processing methods, such as wavelet approach, spatial filtering, and exponential contrast stretching, are compared as well. Overall, the proposed method produces better image compensation in reducing charging artifacts.


Subject(s)
Cellulose/chemistry , Image Enhancement/methods , Microscopy, Electron, Scanning/methods , Algorithms , Electrons , Epoxy Compounds/chemistry , Signal-To-Noise Ratio , Static Electricity , Wavelet Analysis
14.
Scanning ; 33(1): 13-20, 2011.
Article in English | MEDLINE | ID: mdl-21462221

ABSTRACT

This article focuses on the localization of burn mark in MOSFET and the scanning electron microscope (SEM) inspection on the defect location. When a suspect abnormal topography is shown on the die surface, further methods to pin-point the defect location is necessary. Fault localization analysis becomes important because an abnormal spot on the chip surface may and may not have a defect underneath it. The chip surface topography can change due to the catastrophic damage occurred at layers under the chip surface, but it could also be due to inconsistency during metal deposition in the wafer fabrication process. Two localization techniques, liquid crystal thermography and emission microscopy, were performed to confirm that the abnormal topography spot is the actual defect location. The tiny burn mark was surfaced by performing a surface decoration at the defect location using hot hydrochloric acid. SEM imaging, which has the high magnification and three-dimensional capabilities, was used to capture the images of the burn mark.

15.
Scanning ; 33(2): 82-93, 2011.
Article in English | MEDLINE | ID: mdl-21381045

ABSTRACT

A new and robust parameter estimation technique, named image noise cross-correlation, is proposed to predict the signal-to-noise ratio (SNR) of scanning electron microscope images. The results of SNR and variance estimation values are tested and compared with nearest neighborhood and first-order interpolation. Overall, the proposed method is best as its estimations for the noise-free peak and SNR are most consistent and accurate to within a certain acceptable degree, compared with the others.

16.
J Med Syst ; 35(1): 39-48, 2011 Feb.
Article in English | MEDLINE | ID: mdl-20703587

ABSTRACT

A novel technique to quantify the signal-to-noise ratio (SNR) of magnetic resonance images is developed. The image SNR is quantified by estimating the amplitude of the signal spectrum using the autocorrelation function of just one single magnetic resonance image. To test the performance of the quantification, SNR measurement data are fitted to theoretically expected curves. It is shown that the technique can be implemented in a highly efficient way for the magnetic resonance imaging system.


Subject(s)
Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Models, Statistical , Humans , Image Processing, Computer-Assisted/statistics & numerical data , Magnetic Resonance Imaging/statistics & numerical data , Phantoms, Imaging , Signal Processing, Computer-Assisted
17.
J Microsc ; 238(1): 44-56, 2010 Apr 01.
Article in English | MEDLINE | ID: mdl-20384837

ABSTRACT

An exponential contrast stretching (ECS) technique is developed to reduce the charging effects on scanning electron microscope images. Compared to some of the conventional histogram equalization methods, such as bi-histogram equalization and recursive mean-separate histogram equalization, the proposed ECS method yields better image compensation. Diode sample chips with insulating and conductive surfaces are used as test samples to evaluate the efficiency of the developed algorithm. The algorithm is implemented in software with a frame grabber card, forming the front-end video capture element.


Subject(s)
Image Processing, Computer-Assisted/methods , Microscopy, Electron, Scanning/methods , Algorithms , Animals , Culicidae/ultrastructure , Eye/ultrastructure
18.
J Microsc ; 237(2): 111-8, 2010 Feb.
Article in English | MEDLINE | ID: mdl-20096041

ABSTRACT

Interpolation techniques that are used for image magnification to obtain more useful details of the surface such as morphology and mechanical contrast usually rely on the signal information distributed around edges and areas of sharp changes and these signal information can also be used to predict missing details from the sample image. However, many of these interpolation methods tend to smooth or blur out image details around the edges. In the present study, a Lagrange time delay estimation interpolator method is proposed and this method only requires a small filter order and has no noticeable estimation bias. Comparing results with the original scanning electron microscope magnification and results of various other interpolation methods, the Lagrange time delay estimation interpolator is found to be more efficient, more robust and easier to execute.


Subject(s)
Image Processing, Computer-Assisted/methods , Microscopy, Electron, Scanning/methods , Areca/ultrastructure
19.
J Microsc ; 236(1): 18-34, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19772533

ABSTRACT

A new and robust parameter estimation technique, named Gaussian-Taylor interpolation, is proposed to predict the signal-to-noise ratio (SNR) of scanning electron microscope images. The results of SNR and variance estimation values are tested and compared with piecewise cubic Hermite interpolation, quadratic spline interpolation, autoregressive moving average and moving average. Overall, the proposed estimations for noise-free peak and SNR are most consistent and accurate to within a certain acceptable degree compared with the others.

20.
J Microsc ; 234(3): 243-50, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19493101

ABSTRACT

An improvement to the previously proposed Canny optimization technique for scanning electron microscope image colorization is reported. The additional process is adaptive tuning, where colour tuning is performed adaptively, based on comparing the original luminance values with calculated luminance values. The complete adaptive Canny optimization technique gives significantly better mechanical contrast on scanning electron microscope grey-scale images than do existing methods.


Subject(s)
Color , Image Processing, Computer-Assisted/methods , Microscopy, Electron, Scanning/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...