Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Biol Rev Camb Philos Soc ; 98(1): 19-33, 2023 02.
Article in English | MEDLINE | ID: mdl-36054527

ABSTRACT

Understanding how species respond to climate change is key to informing vulnerability assessments and designing effective conservation strategies, yet research efforts on wildlife responses to climate change fail to deliver a representative overview due to inherent biases. Bats are a species-rich, globally distributed group of organisms that are thought to be particularly sensitive to the effects of climate change because of their high surface-to-volume ratios and low reproductive rates. We systematically reviewed the literature on bat responses to climate change to provide an overview of the current state of knowledge, identify research gaps and biases and highlight future research needs. We found that studies are geographically biased towards Europe, North America and Australia, and temperate and Mediterranean biomes, thus missing a substantial proportion of bat diversity and thermal responses. Less than half of the published studies provide concrete evidence for bat responses to climate change. For over a third of studied bat species, response evidence is only based on predictive species distribution models. Consequently, the most frequently reported responses involve range shifts (57% of species) and changes in patterns of species diversity (26%). Bats showed a variety of responses, including both positive (e.g. range expansion and population increase) and negative responses (range contraction and population decrease), although responses to extreme events were always negative or neutral. Spatial responses varied in their outcome and across families, with almost all taxonomic groups featuring both range expansions and contractions, while demographic responses were strongly biased towards negative outcomes, particularly among Pteropodidae and Molossidae. The commonly used correlative modelling approaches can be applied to many species, but do not provide mechanistic insight into behavioural, physiological, phenological or genetic responses. There was a paucity of experimental studies (26%), and only a small proportion of the 396 bat species covered in the examined studies were studied using long-term and/or experimental approaches (11%), even though they are more informative about the effects of climate change. We emphasise the need for more empirical studies to unravel the multifaceted nature of bats' responses to climate change and the need for standardised study designs that will enable synthesis and meta-analysis of the literature. Finally, we stress the importance of overcoming geographic and taxonomic disparities through strengthening research capacity in the Global South to provide a more comprehensive view of terrestrial biodiversity responses to climate change.


Subject(s)
Chiroptera , Animals , Biodiversity , Climate Change , Ecosystem , Population Dynamics
2.
Proc Natl Acad Sci U S A ; 108(37): E718-24, 2011 Sep 13.
Article in English | MEDLINE | ID: mdl-21844350

ABSTRACT

Navigation, the ability to reach desired goal locations, is critical for animals and humans. Animal navigation has been studied extensively in birds, insects, and some marine vertebrates and invertebrates, yet we are still far from elucidating the underlying mechanisms in other taxonomic groups, especially mammals. Here we report a systematic study of the mechanisms of long-range mammalian navigation. High-resolution global positioning system tracking of bats was conducted here, which revealed high, fast, and very straight commuting flights of Egyptian fruit bats (Rousettus aegyptiacus) from their cave to remote fruit trees. Bats returned to the same individual trees night after night. When displaced 44 km south, bats homed directly to one of two goal locations--familiar fruit tree or cave--ruling out beaconing, route-following, or path-integration mechanisms. Bats released 84 km south, within a deep natural crater, were initially disoriented (but eventually left the crater toward the home direction and homed successfully), whereas bats released at the crater-edge top homed directly, suggesting navigation guided primarily by distal visual landmarks. Taken together, these results provide evidence for a large-scale "cognitive map" that enables navigation of a mammal within its visually familiar area, and they also demonstrate the ability to home back when translocated outside the visually familiar area.


Subject(s)
Chiroptera/physiology , Homing Behavior/physiology , Animals , Egypt , Female , Geographic Information Systems , Male , Vision, Ocular/physiology
3.
Trends Ecol Evol ; 23(11): 638-47, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18823680

ABSTRACT

Growing recognition of the importance of long-distance dispersal (LDD) of plant seeds for various ecological and evolutionary processes has led to an upsurge of research into the mechanisms underlying LDD. We summarize these findings by formulating six generalizations stating that LDD is generally more common in open terrestrial landscapes, and is typically driven by large and migratory animals, extreme meteorological phenomena, ocean currents and human transportation, each transporting a variety of seed morphologies. LDD is often associated with unusual behavior of the standard vector inferred from plant dispersal morphology, or mediated by nonstandard vectors. To advance our understanding of LDD, we advocate a vector-based research approach that identifies the significant LDD vectors and quantifies how environmental conditions modify their actions.


Subject(s)
Seeds , Animal Migration , Animals , Biological Evolution , Ecosystem , Geography , Humans , Models, Biological , Population Dynamics , Water Movements , Wind
4.
Proc Biol Sci ; 271(1547): 1467-75, 2004 Jul 22.
Article in English | MEDLINE | ID: mdl-15306318

ABSTRACT

Animals using active sensing systems such as echolocation or electrolocation may experience interference from the signals of neighbouring conspecifics, which can be offset by a jamming avoidance response (JAR). Here, we report JAR in one echolocating bat (Tadarida teniotis: Molossidae) but not in another (Taphozous perforatus: Emballonuridae) when both flew and foraged with conspecifics. In T. teniotis, JAR consisted of shifts in the dominant frequencies of echolocation calls, enhancing differences among individuals. Larger spectral overlap of signals elicited stronger JAR. Tadarida teniotis showed two types of JAR: (i) for distant conspecifics: a symmetric JAR, with lower- and higher-frequency bats shifting their frequencies downwards and upwards, respectively, on average by the same amount; and (ii) for closer conspecifics: an asymmetric JAR, with only the upper-frequency bat shifting its frequency upwards. In comparison, 'wave-type' weakly electric fishes also shift frequencies of discharges in a JAR, but unlike T. teniotis, the shifts are either symmetric in some species or asymmetric in others. We hypothesize that symmetric JAR in T. teniotis serves to avoid jamming and improve echolocation, whereas asymmetric JAR may aid communication by helping to identify and locate conspecifics, thus minimizing chances of mid-air collisions.


Subject(s)
Chiroptera/physiology , Echolocation/physiology , Electric Fish/physiology , Animals , Electrophysiology , Feeding Behavior/physiology , Flight, Animal , Sound Spectrography , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...