Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Dev Biol ; 9(4)2021 Oct 09.
Article in English | MEDLINE | ID: mdl-34698231

ABSTRACT

Dynein is a multi-subunit motor protein that moves toward the minus-end of microtubules, and plays important roles in fly development. We identified Dhc64Cm115, a new mutant allele of the fly Dynein heavy chain 64C (Dhc64C) gene whose heterozygotes survive against lethality induced by overexpression of Sol narae (Sona). Sona is a secreted metalloprotease that positively regulates Wingless (Wg) signaling, and promotes cell survival and proliferation. Knockdown of Dhc64C in fly wings induced extensive cell death accompanied by widespread and disorganized expression of Wg. The disrupted pattern of the Wg protein was due to cell death of the Wg-producing cells at the DV midline and overproliferation of the Wg-producing cells at the hinge in disorganized ways. Coexpression of Dhc64C RNAi and p35 resulted in no cell death and normal pattern of Wg, demonstrating that cell death is responsible for all phenotypes induced by Dhc64C RNAi expression. The effect of Dhc64C on Wg-producing cells was unique among components of Dynein and other microtubule motors. We propose that Dhc64C differentially regulates survival of Wg-producing cells, which is essential for maintaining normal expression pattern of Wg for wing development.

2.
Sci Rep ; 9(1): 17116, 2019 Nov 14.
Article in English | MEDLINE | ID: mdl-31723214

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

3.
Sci Rep ; 9(1): 1270, 2019 02 04.
Article in English | MEDLINE | ID: mdl-30718556

ABSTRACT

Cell survival is essential for all living organisms to cope against multiple environmental insults. Intercellular signaling between dying and surviving cells plays an important role to ensure compensatory proliferation, preventing tissue loss after environmental stresses. Here, we show that Sol narae (Sona), a Disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS) in Drosophila is required for cell survival. sona exhibited a positive genetic interaction with Death-associated inhibitor of apoptosis 1 (Diap1), and a negative genetic interaction with reaper (rpr). Transcription patterns of sona, Diap1, and rpr genes in the pouch region of wing discs were coordinately changed after irradiation. Interestingly, there was a negative correlation in the expression levels of Sona and DIAP1, and both cell types, one with high Sona level and the other with high Diap1 level, were resistant to irradiation-induced cell death. The sona-expressing cells rarely entered into cell cycle themselves but promoted the nearby cells to proliferate in irradiation conditions. We found that these sona-expressing cells are able to upregulate Cyclin D (Cyc D) and increase tissue size. Furthermore, transient Sona overexpression increased survival rate and promoted development of flies in irradiation conditions. We propose that the two types of radiation-resistant cells, one with high Sona level and the other with high Diap1 level, communicate with dying cells and between each other for cell survival and proliferation in response to irradiation.


Subject(s)
Cell Cycle , Imaginal Discs/embryology , Wings, Animal/embryology , Animals , Cell Survival , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster , Imaginal Discs/cytology , Inhibitor of Apoptosis Proteins/genetics , Inhibitor of Apoptosis Proteins/metabolism , Wings, Animal/cytology
4.
Sci Rep ; 6: 31863, 2016 08 18.
Article in English | MEDLINE | ID: mdl-27535473

ABSTRACT

ADAMTS (a disintegrin and metalloproteases with thrombospondin motif) family consists of secreted proteases, and is shown to cleave extracellular matrix proteins. Their malfunctions result in cancers and disorders in connective tissues. We report here that a Drosophila ADAMTS named Sol narae (Sona) promotes Wnt/Wingless (Wg) signaling. sona loss-of-function mutants are lethal and rare escapers had malformed appendages, indicating that sona is essential for fly development and survival. sona exhibited positive genetic interaction with wntless (wls) that encodes a cargo protein for Wg. Loss of sona decreased the level of extracellular Wg, and also reduced the expression level of Wg effector proteins such as Senseless (Sens), Distalless (Dll) and Vestigial (Vg). Sona and Wg colocalized in Golgi and endosomal vesicles, and were in the same protein complex. Furthermore, co-expression of Wg and Sona generated ectopic wing margin bristles. This study suggests that Sona is involved in Wg signaling by regulating the level of extracellular Wg.


Subject(s)
ADAMTS Proteins/metabolism , Drosophila Proteins/metabolism , Gene Expression Regulation/physiology , Signal Transduction/physiology , Wnt1 Protein/metabolism , ADAMTS Proteins/genetics , Animals , Drosophila Proteins/genetics , Drosophila melanogaster , Wnt1 Protein/genetics
6.
PLoS One ; 10(4): e0121999, 2015.
Article in English | MEDLINE | ID: mdl-25849899

ABSTRACT

The Drosophila eye-antenna imaginal disc (ead) is a flattened sac of two-layered epithelia, from which most head structures are derived. Secreted morphogens like Wingless (Wg), Hedgehog (Hh), and Decapentaplegic (Dpp) are important for early patterning of ead, but the underlying mechanisms are still largely unknown. To understand how these morphogens function in the ead of early larval stages, we used wg-LacZ and dpp-Gal4 markers for the examination of wild-type and mutant eads. We found that the ead immediately after hatching was crescent-shaped with the Bolwig's nerve at the ventral edge, suggesting that it consists of dorsal domain. In a subsequent step, transcriptional induction of dpp in the cells along the Bolwig's nerve was followed by rapid growth of the ventral domain. Both Wg and Hh were required for the formation of the ventral domain. Wg was crucial for the growth of the entire ead, but Hh was essential for cell division only in the dorsal domain. In the ventral domain, Hh regulated dpp transcription. Based on these data, we propose that signaling among distinct groups of cells expressing Wg, Dpp, or Hh in the ead of the first-instar larvae are critical for coordinated growth and patterning of ead.


Subject(s)
Body Patterning/physiology , Drosophila Proteins/metabolism , Drosophila melanogaster/growth & development , Eye/growth & development , Gene Expression Regulation, Developmental , Hedgehog Proteins/metabolism , Wnt1 Protein/metabolism , Animals , Drosophila melanogaster/embryology , Drosophila melanogaster/genetics , Eye/embryology , Eye/metabolism , Female , Immunoenzyme Techniques , Male , Morphogenesis , Mutation/genetics , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...