Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 102
Filter
1.
Dent Mater ; 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38926013

ABSTRACT

OBJECTIVE: The commonly used base monomer utilized in resinous commercial dental restorative products is bis-GMA which is derived from bisphenol-A (BPA) - a well-known compound which may disrupt endocrine functions. To address concerns about its leaching into the oral environment and to optimize the quality of dental composites, a BPA-free alternative base monomer, fluorinated urethane dimethacrylate (FUDMA), was designed by modifying a UDMA monomer system. METHODS: Nine groups of composites were prepared by mixing the base monomers and TEGDMA in a ratio of 70/30 wt% to which were added silanized glass particles (mean diameter: 0.7 µm) in 3 different volume fractions (40, 45, and 50 vol%). Bis-GMA and UDMA base monomers were used as control groups in the same ratios. Various properties including degree of conversion (DC), flexural strength (FS) and flexural modulus (FM), water sorption (WS), solubility (SL), surface hardness and roughness, and initial adhesion property against S.mutans were investigated. One-way analysis of variance followed by Bonferroni test at α = 0.05 was used to analyze the results. RESULTS: A significant difference in FS between FUDMA-based composite with 40 vol% filler (120.3 ± 10.4 MPa) and Bis-GMA-based composite with the same filler fraction (105.8 ± 10.0 MPa) was observed but there was no significant difference among other groups. The UDMA based group exhibited the highest WS (1.3 ± 0.3 %). Bis-GMA showed greater initial bacterial adhesion but was not statistically different from the other groups (p = 0.082). SIGNIFICANCE: FUDMA-based resin composites exhibit comparable mechanical and bacterial adhesion properties compared with Bis-GMA and UDMA-based composites. The FUDMA composites show positive outcomes indicating they could be used as substitute composites to Bis-GMA-based composites.

2.
J Dent ; 146: 105025, 2024 07.
Article in English | MEDLINE | ID: mdl-38697507

ABSTRACT

OBJECTIVES: To evaluate the mechanical, wear, antibacterial properties, and biocompatibility of injectable composite materials. METHODS: Two injectable composite resins (GU and BI), one flowable composite resin (FS), and one flowable compomer (DF), in A2 shade, were tested. Mechanical properties were tested via three-point bending test immediately after preparation and after 1-day, 7-day, 14-day, and 30-day water storage. Under water-PMMA slurry immersion, specimens were subjected to a 3-body wear test (10,000 cycles) against stainless steel balls, while the roughness, wear depth, and volume loss were recorded. After 1-day and 3-day MC3T3-E1 cell culture, cell viability was evaluated with CCK-8 test kits, while the cell morphology was observed under CLSM and SEM. Antibacterial properties on S. mutans were assessed via CFU counting, CLSM, and SEM observation. SPSS 26.0 was used for statistical analysis (α = 0.05). RESULTS: The mechanical properties were material-dependent and sensitive to water storage. Flexural strength ranked GU > FS > BI > DF at all testing levels. Three nanocomposites had better wear properties than DF. No significant difference on 1-day cell viability was found, but DF showed significantly lower cell proliferation than nanocomposites on 3-day assessment. GU and FS had more favourable cell adhesion and morphology. CFU counting revealed no significant difference, while FS presented a slightly thicker biofilm and BI showed relatively lower bacteria density. CONCLUSIONS: Injectable nanocomposites outperformed the compomer regarding mechanical properties, wear resistance, and biocompatibility. The tested materials presented comparable antibacterial behaviours. Flowable resin-based composites' performances are affected by multiple factors, and their compositions can be attributed. CLINICAL SIGNIFICANCE: A profound understanding of the mechanical, wear, and biological properties of the restorative material is imperative for the clinical success of dental restorations. The current study demonstrated superior properties of highly filled injectable composite resins, which imply their wider indications and better long-term clinical performances.


Subject(s)
Anti-Bacterial Agents , Biocompatible Materials , Cell Survival , Composite Resins , Materials Testing , Streptococcus mutans , Surface Properties , Composite Resins/chemistry , Composite Resins/pharmacology , Anti-Bacterial Agents/pharmacology , Streptococcus mutans/drug effects , Biocompatible Materials/pharmacology , Biocompatible Materials/chemistry , Mice , Animals , Cell Survival/drug effects , Dental Materials/chemistry , Compomers/pharmacology , Water/chemistry , Nanocomposites/chemistry , Flexural Strength , Injections , Polymethyl Methacrylate/chemistry
3.
Dent J (Basel) ; 12(5)2024 May 15.
Article in English | MEDLINE | ID: mdl-38786540

ABSTRACT

This study aims to investigate whether toothbrushes with fluoride-infused bristles have any (re)mineralisation effects on bovine enamel. Bovine incisors (N = 160) were extracted, and the buccal side of the crown was cut into dimensions of ~5 mm × 5 mm with a low-speed saw. These specimens were randomly allocated into four groups: half (80 teeth) were stored in demineralising solution (DM), and the other half were stored in deionised water (DW) for 96 h. Then, they were brushed with a force of 2.0 ± 0.1 N for five min with a manual toothbrush with either fluoride-infused (TF) or regular (TR) bristles. Microhardness (Vickers), X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDS), and scanning electron microscopy (SEM) were used to investigate the surfaces of the bovine enamel specimens before and after brushing. Two-way ANOVA was used to analyse the hardness data, and the pairwise comparison method was used to analyse the Ca/P ratio, for each group at α = 0.05. The results show that brushing with either of these toothbrushes increased the Vickers microhardness on DM and DW enamel (p < 0.001), whereas hydroxyapatite was revealed in all groups by XRD. The DM samples showed a significant increase (p < 0.05) in the Ca/P ratios after brushing with TR and TF. Conversely, under DW conditions, these ratios decreased significantly after brushing. In terms of the F atomic%, TF increased significantly. SEM revealed mineral deposition in the DM groups after toothbrushing. To conclude, toothbrushing effectively induces the microhardness of sound and demineralised enamel, while fluoride-infused bristles might be able to retain fluoride on the enamel surface.

4.
J Funct Biomater ; 15(5)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38786632

ABSTRACT

This study aims to develop multi-functional bio-safe dental resin composites with capabilities for mineralization, high in vitro biocompatibility, and anti-biofilm properties. To address this issue, experimental resin composites consisting of UDMA/TEGDMA-based dental resins and low quantities (1.9, 3.8, and 7.7 vol%) of 45S5 bioactive glass (BAG) particles were developed. To evaluate cellular responses of resin composites, MC3T3-E1 cells were (1) exposed to the original composites extracts, (2) cultured directly on the freshly cured resin composites, or (3) cultured on preconditioned composites that have been soaked in deionized water (DI water), a cell culture medium (MEM), or a simple HEPES-containing artificial remineralization promotion (SHARP) solution for 14 days. Cell adhesion, cell viability, and cell differentiation were, respectively, assessed. In addition, the anti-biofilm properties of BAG-loaded resin composites regarding bacterial viability, biofilm thickness, and biofilm morphology, were assessed for the first time. In vitro biological results demonstrated that cell metabolic activity and ALP expression were significantly diminished when subjected to composite extracts or direct contact with the resin composites containing BAG fillers. However, after the preconditioning treatments in MEM and SHARP solutions, the biomimetic calcium phosphate minerals on 7.7 vol% BAG-loaded composites revealed unimpaired or even better cellular processes, including cell adhesion, cell proliferation, and early cell differentiation. Furthermore, resin composites with 1.9, 3.8, and 7.7 vol% BAG could not only reduce cell viability in S. mutans biofilm on the composite surface but also reduce the biofilm thickness and bacterial aggregations. This phenomenon was more evident in BAG7.7 due to the high ionic osmotic pressure and alkaline microenvironment caused by BAG dissolution. This study concludes that multi-functional bio-safe resin composites with mineralization and anti-biofilm properties can be achieved by adding low quantities of BAG into the resin system, which offers promising abilities to mineralize as well as prevent caries without sacrificing biological activity.

5.
J Dent ; 146: 105031, 2024 07.
Article in English | MEDLINE | ID: mdl-38710315

ABSTRACT

OBJECTIVES: To investigate and compare the chemical and optical stability of four restorative composite materials: two injectable resins, one flowable resin and one compomer. METHODS: Two injectable nano-filled composite resins: G-aenial Universal (GU) and Beautifil Injectable XSL (BI), a flowable composite resin: Filtek Supreme Flowable (FS) and a compomer: Dyract Flow (DF), in A2 shade were tested and compared. Water sorption and solubility were conducted according to ISO4049:2019 standard; ICP-OES and F-ion selective electrode were used to test the elemental release; Degree of conversion (DC) was obtained by using FTIR; water contact angle was obtained by static sessile drop method, and a spectrophotometer was used for optical properties (ΔE⁎, ΔL⁎ and TP). SPSS 28.0 was used for statistical analysis and the significant level was pre-set as α = 0.05. RESULTS: GU performed the best in water sorption and solubility, FS had the lowest elemental release, the best colour stability, and the highest DCIM and DC24-h. DF, the compomer had the lowest, and GU and BI, the injectable composites had the largest water contact angle, respectively. Correlations were found between water sorption and water solubility. CONCLUSIONS: The four composite restorative materials showed different chemical and optical behaviours. Overall, composite resins performed better than compomer, while additional laboratory and in vivo tests are necessary to obtain a more comprehensive comparison between injectable and flowable composite resins. Wsp and Wsl are influenced by many common factors, and the values are highly positively related. CLINICAL SIGNIFICANCE: A comprehensive understanding of materials is crucial before selecting materials for clinical practice. Composite resins rather than compomers are recommended because of their exceptional properties, which make them eligible for a wide range of clinical applications and an elongated lifespan.


Subject(s)
Color , Compomers , Composite Resins , Dental Materials , Materials Testing , Solubility , Water , Composite Resins/chemistry , Dental Materials/chemistry , Water/chemistry , Compomers/chemistry , Humans , Dental Restoration, Permanent/methods , Spectrophotometry , Spectroscopy, Fourier Transform Infrared , Methacrylates/chemistry , Injections , Polyurethanes/chemistry , Nanocomposites/chemistry , Surface Properties , Optical Phenomena , Bisphenol A-Glycidyl Methacrylate
6.
J Mech Behav Biomed Mater ; 155: 106543, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38636445

ABSTRACT

The potential of using specimens with a double-semicircular-notched configuration for performing tensile tests of orthodontic thermoplastic aligner materials was explored. Unnotched and double-semicircular-notched specimens were loaded in tension using a universal testing machine to determine their tensile strength, while finite element analysis (FEA) and digital image correlation (DIC) were used to estimate stress and strain, respectively. The shape did affect the tensile strength, demonstrating the importance of unifying the form of the specimen. During the elastic phase under tension, double-semicircular-notched specimens showed similar behavior to unnotched specimens. However, great variance was observed in the strain patterns of the unnotched specimens, which exhibited greater chance of end-failure, while the strain patterns of the double-semicircular-notched specimens showed uniformity. Considerable agreement between the theoretical (FEA) and practical models (DIC) further confirmed the validity of the double-semicircular-notched models.


Subject(s)
Finite Element Analysis , Materials Testing , Stress, Mechanical , Tensile Strength , Materials Testing/instrumentation , Mechanical Tests , Plastics , Temperature , Orthodontic Appliances , Mechanical Phenomena
7.
Emerg Microbes Infect ; 13(1): 2337671, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38551320

ABSTRACT

Hepatitis E virus (HEV) variants infecting humans belong to two species: Paslahepevirus balayani (bHEV) and Rocahepevirus ratti (rat hepatitis E virus; rHEV). R. ratti is a ubiquitous rodent pathogen that has recently been recognized to cause hepatitis in humans. Transmission routes of rHEV from rats to humans are currently unknown. In this study, we examined rHEV exposure in cats and dogs to determine if they are potential reservoirs of this emerging human pathogen. Virus-like particle-based IgG enzymatic immunoassays (EIAs) capable of differentiating rHEV & bHEV antibody profiles and rHEV-specific real-time RT-PCR assays were used for this purpose. The EIAs could detect bHEV and rHEV patient-derived IgG spiked in dog and cat sera. Sera from 751 companion dogs and 130 companion cats in Hong Kong were tested with these IgG enzymatic immunoassays (EIAs). Overall, 13/751 (1.7%) dogs and 5/130 (3.8%) cats were sero-reactive to HEV. 9/751 (1.2%) dogs and 2/130 (1.5%) cats tested positive for rHEV IgG, which was further confirmed by rHEV immunoblots. Most rHEV-seropositive animals were from areas in or adjacent to districts reporting human rHEV infection. Neither 881 companion animals nor 652 stray animals carried rHEV RNA in serum or rectal swabs. Therefore, we could not confirm a role for cats and dogs in transmitting rHEV to humans. Further work is required to understand the reasons for low-level seropositivity in these animals.


Subject(s)
Cat Diseases , Dog Diseases , Hepatitis E virus , Hepatitis E , Animals , Cats , Dogs , Humans , Rats , Hepatitis E virus/genetics , Hong Kong , Animals, Wild , Pets , Immunoglobulin G
8.
J Med Virol ; 95(12): e29313, 2023 12.
Article in English | MEDLINE | ID: mdl-38100626

ABSTRACT

Autoantibodies against angiotensin-converting enzyme 2 (ACE2) are frequently reported in patients during coronavirus disease 2019 (COVID-19) with evidence for a pathogenic role in severe infection. However, little is known of the prevalence or clinical significance of ACE2 autoantibodies in late convalescence or following COVID-19 vaccination. In this study, we measured ACE2 autoantibodies in a cohort of 182 COVID-19 convalescent patients, 186 COVID-19 vaccine recipients, and 43 adolescents with post-mRNA vaccine myopericarditis using two ACE2 enzymatic immunoassays (EIAs). ACE2 IgM autoantibody EIA median optical densities (ODs) were lower in convalescent patients than pre-COVID-19 control samples with only 2/182 (1.1%) convalescents testing positive. Similarly, only 3/182 (1.6%) convalescent patients tested positive for ACE2 IgG, but patients with history of moderate-severe COVID-19 tended to have significantly higher median ODs than controls and mild COVID-19 patients. In contrast, ACE2 IgG antibodies were detected in 10/186 (5.4%) COVID-19 vaccine recipients after two doses of vaccination. Median ACE2 IgG EIA ODs of vaccine recipients were higher than controls irrespective of the vaccine platform used (inactivated or mRNA). ACE2 IgG ODs were not correlated with surrogate neutralizing antibody levels in vaccine recipients. ACE2 IgG levels peaked at day 56 post-first dose and declined within 12 months to baseline levels in vaccine recipients. Presence of ACE2 antibodies was not associated with adverse events following immunization including myopericarditis. One convalescent patient with ACE2 IgG developed Guillain-Barre syndrome, but causality was not established. ACE2 autoantibodies are observed in COVID-19 vaccine recipients and convalescent patients, but are likely innocuous.


Subject(s)
COVID-19 , Myocarditis , Adolescent , Humans , COVID-19/prevention & control , Autoantibodies , COVID-19 Vaccines/adverse effects , Angiotensin-Converting Enzyme 2 , Vaccination , Antibodies, Neutralizing , Immunoglobulin G , Antibodies, Viral
9.
J Dent ; 139: 104761, 2023 12.
Article in English | MEDLINE | ID: mdl-37879557

ABSTRACT

OBJECTIVES: To develop a new post-processing strategy that utilizes an auxiliary device to adjust intraoral scans and improve the accuracy of 3D models of complete-arch dental implants. MATERIALS AND METHODS: An edentulous resin model with 6 dental implants was prepared. An auxiliary device, consisting of an opaque base and artificial landmarks, was fabricated and mounted onto the resin model. Twenty intraoral scans (raw scans) were taken using this setup. A new post-processing strategy was proposed to adjust the raw scans using reverse engineering software (verified group). Additionally, ten conventional gypsum casts were duplicated and digitized using a laboratory scanner. The linear and angular trueness and precision of the models were evaluated and compared. The effect of the proposed strategy on the accuracy of complete-arch intraoral scans was analyzed using one-way ANOVA. RESULTS: The linear trueness (29.7 µm) and precision (24.8 µm) of the verified group were significantly better than the raw scans (46.6 µm, 44.7 µm) and conventional casts (51.3 µm, 36.5 µm), particularly in cross-arch sites. However, the angular trueness (0.114°) and precision (0.085°) of the conventional casts were significantly better than both the verified models (0.298°, 0.168°) and the raw scans (0.288°, 0.202°). CONCLUSIONS: The novel post-processing strategy is effective in enhancing the linear accuracy of complete-arch implant IO scans, especially in cross-arch sites. However, further improvement is needed to eliminate the angular deviations. CLINICAL SIGNIFICANCE: Errors generated from intraoral scanning in complete edentulous arches exceed the clinical threshold. The elimination of stitching errors in the raw scans particularly in the cross-arch sites, through the proposed post-processing strategy would enhance the accuracy of complete-arch implant prostheses.


Subject(s)
Dental Implants , Mouth, Edentulous , Humans , Imaging, Three-Dimensional , Dental Impression Technique , Models, Dental , Computer-Aided Design , Dental Arch/diagnostic imaging
10.
Dent Mater ; 39(12): 1105-1112, 2023 12.
Article in English | MEDLINE | ID: mdl-37839996

ABSTRACT

OBJECTIVES: The aim of present study was to examine the effect of Porphyromonas gingivalis (P.g.) adhesion on dental zirconia by characterizing the physical and chemical properties. METHODS: Eighty polished-sintered zirconia discs were prepared and randomly distributed to 5 groups (n = 16): Zirconia cultured with - Group 1: broth containing P.g. for - 3 days; Group 2: 7 days; Group 3: broth (alone) for - 3 days; Group 4: 7 days; and Group 5: dry discs (negative control). After experimental period, broths were analyzed for pH and Zr release with inductively coupled plasma-optical emission spectroscopy (ICP-OES). The zirconia surface was evaluated by scanning electron microscope (SEM), atomic force microscopy (AFM), X-ray diffraction (XRD), water contact angle (WCA), and biaxial flexural strength (BFS). RESULTS: The mean pH with zirconia adhesion to P.g. group was significantly higher than the broth control (p < 0.05). As per ICP-OES, Zr ion/particulate release with P.g. adhesion to zirconia were significantly higher than the controls (p < 0.05). Post-experimental incubation, no defects were found on zirconia surfaces; tetragonal phase remained constant with no transformation to monoclinic phase but lower peak intensities were identified in experimental groups. WCA of zirconia surfaces with P.g. bacteria for 3 days (12.04° ± 2.05°) and 7 days (15.09° ± 2.95°) were significantly higher than zirconia surfaces immersed with broth (only) for 3 days (7.17° ± 1.09°) and 7 days (7.55° ± 0.65°), respectively (p < 0.05). BFS values of zirconia with P.g. for 3 days (632.57 ± 119.96 MPa) and 7 days (656.17 ± 100.29 MPa) were significantly lower than zirconia incubated in broth alone (765.01 ± 20.12 MPa) conditions (p < 0.05). SIGNIFICANCE: Under the conditions of present study, it can be concluded that P.g. adhesion on zirconia leads to structural alterations of dental zirconia further contributing to zirconia degradation.


Subject(s)
Dental Materials , Porphyromonas gingivalis , Dental Materials/chemistry , Materials Testing , Microscopy, Electron, Scanning , Zirconium/chemistry , Water , Surface Properties , Yttrium/chemistry , Ceramics/chemistry
11.
JHEP Rep ; 5(9): 100793, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37575885

ABSTRACT

Background & Aims: Rat hepatitis E virus (Rocahepevirus ratti; HEV-C1) is an emerging cause of hepatitis E that is divergent from conventional human-infecting HEV variants (Paslahepevirus balayani; HEV-A). Validated serological assays for HEV-C1 are lacking. We aimed to develop a parallel enzymatic immunoassay (EIA) system that identifies individuals with HEV-C1 exposure. We also aimed to conduct the first HEV-C1 seroprevalence study in humans using this validated EIA system. Methods: Expressed HEV-A (HEV-A4 p239) and HEV-C1 (HEV-C1 p241) peptides were characterised. Blood samples were simultaneously tested in HEV-A4 p239 and HEV-C1 p241 IgG EIAs. An optical density (OD) cut-off-based interpretation algorithm for identifying samples seropositive for HEV-A or HEV-C1 was validated using RT-PCR-positive infection sera. This algorithm was used to measure HEV-C1 seroprevalence in 599 solid organ transplant recipients and 599 age-matched immunocompetent individuals. Results: Both peptides formed virus-like particles. When run in HEV-A4 p239 and HEV-C1 p241 EIAs, HEV-A and HEV-C1 RT-PCR-positive samples formed distinct clusters with minimal overlap in a two-dimensional plot of optical density values. The final EIA interpretation algorithm showed high agreement with RT-PCR results (Cohen's κ = 0.959) and was able to differentiate HEV-A and HEV-C1 infection sera with an accuracy of 94.2% (95% CI: 85.8-98.4%). HEV-C1 IgG seroprevalence was 7/599 (1.2%) among solid organ transplant recipients and 4/599 (0.7%) among immunocompetent individuals. Five of 11 (45.5%) of these patients had history of transient hepatitis of unknown cause. Conclusions: HEV-C1 exposure was identified in 11/1198 (0.92%) individuals in Hong Kong indicating endemic exposure. This is the first estimate of HEV-C1 seroprevalence in humans. The parallel IgG EIA algorithm is a valuable tool for investigating epidemiology and risk factors for HEV-C1 infection. Impact and Implications: Rat hepatitis E virus has recently been discovered to infect humans, but antibody tests for this infection are lacking, making it difficult to gauge how common this infection is. We developed an antibody test algorithm that can identify individuals with past rat hepatitis E virus exposure. We used this algorithm to estimate rat hepatitis E exposure rates in humans in Hong Kong and found that approximately 1% of all tested people had been exposed to this virus previously.

12.
Lasers Med Sci ; 38(1): 145, 2023 Jun 22.
Article in English | MEDLINE | ID: mdl-37347307

ABSTRACT

The purpose of the study was to determine the influence of preparation techniques on marginal adaptation and sealing of Biodentine™ and TotalFill® RRM bioceramic retrograde fillings. Fifty-two single-root teeth extracted for periodontal reasons were used. Root canals were instrumented using Reciproc Blue #25 and obturated using a single cone technique with an AH Plus® root canal sealer. Retrograde cavities were prepared with Piezomed device (Piezo), Er:YAG laser in short-pulse(SP) and quantum square pulse(QSP) modes and filled with Biodentine™ (BD) or TotalFill® RRM (TF). There were 6 groups (n=8): (1) Piezo BD, (2) Piezo TF, (3) SP BD, (4) SP TF, (5) QSP BD, and (6) QSP TF, and positive and negative controls (n=2). Micro-CT analysis was performed on two samples from each group. Percentage volumes of internal and external voids in apical 1.5 mm were determined. Rhodamine B dye leakage was done on six samples. The samples were cut longitudinally and examined under a stereomicroscope. Digital recordings were analyzed in ImageJ software. The deepest penetration of color in mm was recorded. The data were statistically analyzed using ANOVA and Duncan's test at the level of significance α=0.05. TotalFill® RRM performed significantly better than Biodentine™ in terms of sealing (p<0.05) and marginal adaptation, as evaluated by micro-CT. Sealing was significantly better in SP compared to QSP mode preparations (p<0.05). Differences between Piezomed and laser modes were not significantly different (p>0.05). Sealing was statistically significantly better with TotalFill® RRM compared to Biodentine™ and in Er:YAG SP preparations compared to Er:YAG QSP.


Subject(s)
Dental Leakage , Lasers, Solid-State , Root Canal Filling Materials , Humans , Lasers, Solid-State/therapeutic use , Ultrasonics , X-Ray Microtomography , Research Design , Heart Rate , Root Canal Preparation , Dental Pulp Cavity
13.
Br Dent J ; 234(10): 751, 2023 05.
Article in English | MEDLINE | ID: mdl-37237205
14.
Int Dent J ; 73(6): 828-833, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37202299

ABSTRACT

OBJECTIVES: The aim of the present study was to examine the plaque removal effectiveness of a personalised 3D-printed dental plaque removal mouthguard device in a clinical trial setting. METHODS: A personalised 3D-printed mouthguard was developed to clean dental plaque using micro-mist. A clinical trial was conducted to examine the plaque removal effectiveness of this device. The clinical trial recruited 55 participants (21 males and 34 females) with an average age of 68.4 years (range, 60-81 years). Dental plaque was dyed by plaque disclosing liquid (Ci). Turesky Modification of the Quigley-Hein Plaque Index (TMQHPI) was used to evaluate the level and rate of plaque formation on the tooth surface. The TMQHPI was recorded and intraoral photos were taken before and after mouthguard cleaning. The plaque removal rate was calculated based on TMQHPI and intraoral photos (pixel-based method) before and after cleaning. RESULTS: The personalised 3D-printed micro-mist injection mouthguard can be effective in dental plaque removal on tooth and gingiva, and the effectiveness lies between that of a manual toothbrush and a mouth rinse. The newly proposed pixel-based method can be a practical, high sensitive tool to evaluate the level of plaque formation. CONCLUSIONS: Under the conditions of the present study, we conclude that the personalised 3D-printed micro-mist injection mouthguard can be useful in reducing dental plaque and may be especially suitable for older adults and disabled people.


Subject(s)
Dental Plaque , Male , Female , Humans , Aged , Dental Plaque/prevention & control , Single-Blind Method , Toothbrushing/methods , Gingiva , Dental Plaque Index , Printing, Three-Dimensional , Cross-Over Studies , Equipment Design
15.
J Funct Biomater ; 14(4)2023 Apr 14.
Article in English | MEDLINE | ID: mdl-37103310

ABSTRACT

BACKGROUND: Autogenous tooth bone graft material (AutoBT) has been advocated as a bone substitute when conducting alveolar ridge preservation. This study is aimed at using a radiomics approach in order to evaluate and testify whether AutoBT can stimulate bone growth during socket preservation in severe periodontal cases. MATERIALS AND METHODS: For this study, 25 cases with severe periodontal diseases were selected. The patients' AutoBTs were inserted into the extraction sockets and covered with Bio-Gide® collagen membranes. 3D CBCT scans and 2D X-rays were taken of the patients before surgery and after 6 months post-surgery. For the retrospective radiomics analysis, the maxillary and mandibular images were compared in different groups. Maxillary bone height was analyzed at the buccal, middle, and palatal crest sites, while the mandibular bone height was compared at the buccal, center, and lingual crest sites. RESULTS: In the maxilla, the alveolar height was increased by -2.15 ± 2.90 mm at the buccal crest; -2.45 ± 2.36 mm at the center of the socket, and -1.62 ± 3.19 mm at the palatal crest, while the height of the buccal crest was increased by 0.19 ± 3.52 mm, and the height at the center of the socket was increased by -0.70 ± 2.71 mm in the mandible. The three-dimensional radiomics analysis demonstrated significant bone growth in the local alveolar height and high density. CONCLUSION: Based on clinical radiomics analysis, AutoBT could be used as an alternative bone material in socket preservation after tooth extraction in patients with severe periodontitis.

16.
ACS Appl Bio Mater ; 6(3): 1221-1230, 2023 03 20.
Article in English | MEDLINE | ID: mdl-36862938

ABSTRACT

Quaternary ammonium compounds (QACs) have been widely used due to their excellent antimicrobial activity. However, using the technology where nanomaterials are employed as drug carriers to deliver QAC drugs has not been fully explored. In this study, mesoporous silica nanoparticles (MSNs) with short rod morphology were synthesized in a one-pot reaction using an antiseptic drug cetylpyridinium chloride (CPC). CPC-MSN were characterized via various methods and tested against three bacterial species (Streptococcus mutans, Actinomyces naeslundii, and Enterococcus faecalis), which are associated with oral infections, caries, and endodontic pathology. The nanoparticle delivery system used in this study prolonged the release of CPC. The manufactured CPC-MSN effectively killed the tested bacteria within the biofilm, and their size allowed them to penetrate into dentinal tubules. This CPC-MSN nanoparticle delivery system demonstrates potential for applications in dental materials.


Subject(s)
Anti-Infective Agents, Local , Nanoparticles , Cetylpyridinium/pharmacology , Anti-Infective Agents, Local/pharmacology , Biofilms , Streptococcus mutans
17.
Dent Mater ; 39(3): 320-332, 2023 03.
Article in English | MEDLINE | ID: mdl-36822895

ABSTRACT

OBJECTIVES: This study utilised an Artificial Intelligence (AI) method, namely 3D-Deep Convolutional Generative Adversarial Network (3D-DCGAN), which is one of the true 3D machine learning methods, as an automatic algorithm to design a dental crown. METHODS: Six hundred sets of digital casts containing mandibular second premolars and their adjacent and antagonist teeth obtained from healthy personnel were machine-learned using 3D-DCGAN. Additional 12 sets of data were used as the test dataset, whereas the natural second premolars in the test dataset were compared with the designs in (1) 3D-DCGAN, (2) CEREC Biogeneric, and (3) CAD for morphological parameters of 3D similarity, cusp angle, occlusal contact point number and area, and in silico fatigue simulations with finite element (FE) using lithium disilicate material. RESULTS: The 3D-DCGAN design and natural teeth had the lowest discrepancy in morphology compared with the other groups (root mean square value = 0.3611). The Biogeneric design showed a significantly (p < 0.05) higher cusp angle (67.11°) than that of the 3D-DCGAN design (49.43°) and natural tooth (54.05°). No significant difference was observed in the number and area of occlusal contact points among the four groups. FE analysis showed that the 3D-DCGAN design had the best match to the natural tooth regarding the stress distribution in the crown. The 3D-DCGAN design was subjected to 26.73 MPa and the natural tooth was subjected to 23.97 MPa stress at the central fossa area under physiological occlusal force (300 N); the two groups showed similar fatigue lifetimes (F-N curve) under simulated cyclic loading of 100-400 N. Designs with Biogeneric or technician would yield respectively higher or lower fatigue lifetime than natural teeth. SIGNIFICANCE: This study demonstrated that 3D-DCGAN could be utilised to design personalised dental crowns with high accuracy that can mimic both the morphology and biomechanics of natural teeth.


Subject(s)
Artificial Intelligence , Crowns , Dental Prosthesis Design , Computer-Aided Design , Dental Porcelain , Algorithms , Dental Stress Analysis
18.
J Funct Biomater ; 14(2)2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36826907

ABSTRACT

This study was conducted as a means to evaluate the stress distribution patterns of anterior ceramic resin-bonded fixed partial dentures derived from different materials and numerous connector designs that had various loading conditions imposed onto them through the utilization of the finite element method. A finite element model was established on the basis of the cone beam computed tomography image of a cantilevered resin-bonded fixed partial denture with a central incisor as an abutment and a lateral incisor as a pontic. Sixteen finite element models representing different conditions were simulated with lithium disilicate and zirconia. Connector height, width, and shape were set as the geometric parameters. Static loads of 100 N, 150 N, and 200 N were applied at 45 degrees to the pontic. The maximum equivalent stress values obtained for all finite element models were compared with the ultimate strengths of their materials. Higher load exhibited greater maximum equivalent stress in both materials, regardless of the connector width and shape. Loadings of 200 N and 150 N that were correspondingly simulated on lithium disilicate prostheses of all shapes and dimensions resulted in connector fractures. On the contrary, loadings of 200 N, 150 N, and 100 N with rectangular-shaped connectors correspondingly simulated on zirconia were able to withstand the loads. However, two of the trapezoidal-shaped zirconia connectors were unable to withstand the loads and resulted in fractures. It can be deduced that material type, shape, and connector dimensions concurrently influenced the integrity of the bridge.

19.
J Evid Based Dent Pract ; 23(1S): 101796, 2023 01.
Article in English | MEDLINE | ID: mdl-36707171

ABSTRACT

OBJECTIVE: Dentists use a large number of dental materials to treat patients, mainly for pain relief, improved oral function, and orofacial appearance purposes. These materials supposably have been clinically tested and registered before launching onto the market. In terms of clinical testing, despite various objective and subjective assessments that could be done, the dentist-centred outcomes and regulatory body requirements might not fully reflect the perspective of the patient. Thus, dental-patient reported outcomes (dPROs) might be useful in providing valuable self-perceived feedback to stakeholders across a long period of time about the materials... performances. METHODS AND RESULTS: This narrative review evaluated various assessment dPROs tools and their applications to contemporary dental materials, trying to link up basic materials science and biomechanics with the patients... reported outcomes. CONCLUSIONS: dPROs can eventually form a basis of value-based dentistry for dental materials that would be of importance in terms of research, regulatory and safety.


Subject(s)
Dental Materials , Patient Reported Outcome Measures , Humans
20.
Dent Mater ; 39(1): 86-100, 2023 01.
Article in English | MEDLINE | ID: mdl-36503862

ABSTRACT

OBJECTIVE: To seek dentine analogue materials in combined experimental, analytical, and numerical approaches on the mechanical properties and fatigue behaviours that could replace human dentine in a crown fatigue laboratory test. METHODS: A woven glass fibre-filled epoxy (NEMA grade G10; G10) and a glass fibre-reinforced polyamide-nylon (30% glass fibre reinforced polyamide-nylon 6,6; RPN) were investigated and compared with human dentine (HD). Flexural strength and elastic modulus (n = 10) were tested on beam-shaped specimens via three-point bending, while indentation hardness (n = 3) was tested after fracture. Abutment substrates of G10, RPN and HD were prepared and resin-bonded with monolithic lithium disilicate crowns (n = 10), then subjected to wet cyclic loading in a step-stress manner (500 N initial load, 100 N step size, 100,000 cycles per step, 20 Hz frequency). Data were statistically analysed using Kruskal-Wallis one-way ANOVA followed by post-hoc comparisons (α = 0.05). Survival probability estimation was performed by Mantel-Cox Log-Rank test with 95% confidence intervals. The fatigue failure load (FFL) and the number of cycles until failure (NCF) were evaluated with Weibull statistics. Finite Element Models of the fatigue test were established for stress distribution analysis and lifetime prediction. Fractographic observations were qualitatively analysed. RESULTS: The flexural strength of HD (164.27 ± 14.24 MPa), G10 (116.48 ± 5.93 MPa), and RPN (86.73 ± 3.56 MPa) were significantly different (p < 0.001), while no significant difference was observed in their flexural moduli (p = 0.377) and the indentation hardness between HD and RPN (p = 0.749). The wet cyclic fatigue test revealed comparable mean FFL and NCF of G10 and RPN to HD (p = 0.237 and 0.294, respectively) and similar survival probabilities for the three groups (p = 0.055). However, RPN promotes higher stability and lower deviation of fatigue test results than G10 in Weibull analysis and FEA. SIGNIFICANCE: Even though dentine analogue materials might exhibit similar elastic properties and fatigue performance to human dentine, different reliabilities of fatigue on crown-dentine analogues were shown. RPN seems to be a better substrate that could provide higher reliability and predictability of laboratory study results.


Subject(s)
Ceramics , Nylons , Humans , Ceramics/chemistry , Reproducibility of Results , Materials Testing , Surface Properties , Dental Stress Analysis , Dental Porcelain/chemistry , Crowns , Dentin , Computer-Aided Design
SELECTION OF CITATIONS
SEARCH DETAIL
...