Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nanotechnol Sci Appl ; 14: 1-6, 2021.
Article in English | MEDLINE | ID: mdl-33469275

ABSTRACT

PURPOSE: Magnetotransport properties of granular oxide-segregated CoPtCr films were studied on both macroscopic and microscopic length scales by performing bulk and point-contact magnetoresistance measurements, respectively. Such a perpendicular magnetic medium is used in state-of-the-art hard disc drives and, when combined with magnetotransport phenomena for read/write operations, may lead to a novel concept for magnetic recording with high areal density. MATERIALS AND METHODS: The CoPtCr films were deposited by an epitaxy-like sputtering and contained several perpendicularly magnetized granular-media layers with different coercivities; they are very much like the state-of-the-art perpendicular magnetic medium, which can be found in today's hard disc drives. Magnetoresistive properties of bulk films were assessed by measuring the film resistance in the standard Van der Pauw geometry, while the local transport was probed by the point-contact technique. RESULTS: The bulk measurements showed only a negligible magnetoresistance of less than 0.02%. In contrast, the local point-contact measurements revealed giant-magnetoresistance-like changes ΔR in local resistance of the contact R with more than 10,000% ratio ΔR/R. CONCLUSION: The observed large and local magnetoresistive effect could be tentatively attributed to a tunnel magnetoresistance between oxide-segregated CoPtCr grains with different coercivities. The tunneling picture of electronic transport in our granular medium was confirmed by the observation of tunneling-like current-voltage characteristics of the contacts and bias dependence of the contact magnetoresistance - both the local point-contact resistance and magnetoresistance were found to decrease with the applied dc bias.

2.
Sci Rep ; 8(1): 7721, 2018 May 16.
Article in English | MEDLINE | ID: mdl-29769572

ABSTRACT

The development of novel nano-oxide spintronic devices would benefit greatly from interfacing with emergent phenomena at oxide interfaces. In this paper, we integrate highly spin-split ferromagnetic semiconductor EuO onto perovskite SrTiO3 (001). A careful deposition of Eu metal by molecular beam epitaxy results in EuO growth via oxygen out-diffusion from SrTiO3. This in turn leaves behind a highly conductive interfacial layer through generation of oxygen vacancies. Below the Curie temperature of 70 K of EuO, this spin-polarized two-dimensional t 2g electron gas at the EuO/SrTiO3 interface displays very large positive linear magnetoresistance (MR). Soft x-ray angle-resolved photoemission spectroscopy (SX-ARPES) reveals the t 2g nature of the carriers. First principles calculations strongly suggest that Zeeman splitting, caused by proximity magnetism and oxygen vacancies in SrTiO3, is responsible for the MR. This system offers an as-yet-unexplored route to pursue proximity-induced effects in the oxide two-dimensional t 2g electron gas.

3.
Phys Rev Lett ; 102(6): 067201, 2009 Feb 13.
Article in English | MEDLINE | ID: mdl-19257626

ABSTRACT

The electromotive force induced by a moving magnetic domain wall in a nanostrip has been calculated theoretically and detected experimentally. It is found that the emf depends only on the domain wall transformation frequency through a universal Josephson type relation, which is closely related to the topological nature of the domain wall. Our experimental measurements confirm the theoretical prediction.

4.
Nat Mater ; 4(10): 741-4, 2005 Oct.
Article in English | MEDLINE | ID: mdl-16184174

ABSTRACT

Ferromagnetic nanowires are likely to play an important role in future spintronic devices. Magnetic domain walls, which separate regions of opposing magnetization in a nanowire, can be manipulated and used to encode information for storage or to perform logic operations. Owing to their reduced size and dimensionality, the characterization of domain-wall motion is an important problem. To compete with other technologies, high-speed operation, and hence fast wall propagation, is essential. However, the domain-wall dynamics in nanowires has only been investigated in the last five years and some results indicate a drastic slowing down of wall motion in higher magnetic fields. Here we show that the velocity-field characteristic of a domain wall in a nanowire shows two linear regimes, with the wall mobility at high fields reduced tenfold from that at low fields. The transition is marked by a region of negative differential mobility and highly irregular wall motion. These results are in accord with theoretical predictions that, above a threshold field, uniform wall movement gives way to turbulent wall motion, leading to a substantial drop in wall mobility. Our results help resolve contradictory reports of wall propagation velocities in laterally confined geometries, and underscore the importance of understanding and enhancing the breakdown field for practical applications.


Subject(s)
Electric Wiring , Iron/chemistry , Iron/radiation effects , Magnetics , Nanotubes/chemistry , Nanotubes/radiation effects , Electromagnetic Fields , Iron/analysis , Kinetics , Materials Testing , Nanotubes/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...