Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Biomedicines ; 12(3)2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38540249

ABSTRACT

This is the first in vivo study to investigate the neuroprotective effects of krypton on focal cerebral ischemia. The aim of the study was to analyze the effect of 2 h of inhalation of a krypton-oxygen mixture (Kr 70%/O2 30%) on the recovery of neurological functions and the degree of brain damage in rats after photoinduced ischemic stroke (PIS) and to investigate the possible mechanisms responsible for this neuroprotection. Experiments were performed on male Wistar rats weighing 250-300 g (n = 32). Animals were randomized into four groups. Two groups (n = 20) underwent photoinduced ischemic stroke, followed by 2 h of inhalation of krypton-oxygen mixture consisting of Kr 70%/O2 30% or a nitrogen-oxygen breathing mixture consisting of N2 70%/O2 30%, followed by neurological examinations on days 3 and 7. The other two groups (n = 12) received only gas mixtures of the same concentration and exposure duration as in those in the PIS groups, then Western blot analysis of the potential molecular mechanisms was performed. The results of the study show that treatment with the krypton-oxygen mixture consisting of Kr 70%/O2 30% improves the neurological status on day 7 of observation, reduces the lesion volume according to the MRI examination and the number of Iba-1- and caspase-3-positive cells in the damaged area, promotes the activation of neoangiogenesis (an increase in the von Willebrand factor), and reduces the penumbra area and the number of NeuN-positive cells in it on day 14 of observation. Inhalation of the krypton-oxygen mixture also significantly increases the levels of phosphorylated AKT kinase (protein kinase B) and glycogen synthase kinase 3b (pGSK3b) and promotes the expression of transcription factor Nrf2, which was accompanied by the lowered expression of transcription factor NFkB (p50). Thus, we showed pronounced neuroprotection induced by krypton inhalation after stroke and identified the signaling pathways that may be responsible for restoring neurological functions and reducing damage.

2.
Microvasc Res ; 152: 104647, 2024 03.
Article in English | MEDLINE | ID: mdl-38092223

ABSTRACT

INTRODUCTION: Laser doppler flowmetry (LDF) allows non-invasive assessment of microvascular functions. The combination of LDF with an occlusion functional test enables study of post-occlusive reactive hyperemia (PORH), providing additional information about vasomotor function, capillary blood flow reserve, and the overall reactivity of the microvascular system. AIM: To identify early alterations of PORH variables in the skin of a rat in hemorrhagic shock (HS). MATERIAL AND METHODS: Male Wistar rats (n = 14) weighing 400-450 g were anesthetized with a combination of tiletamine/zolazepam (20 mg/kg) and xylazine (5 mg/kg). The animals breathed on their own, and were placed on a heated platform in the supine position. A PE-50 catheter was inserted into the carotid artery to measure the mean arterial pressure (MAP). The optical probe of the Laser Doppler device was installed on the plantar surface of the hind limb of a rat; a pneumatic cuff was applied proximal to the same limb. The occlusion time was 3 min. The following physiological variables were measured at baseline and 30 min after blood loss: MAP, mmHg; mean cutaneous blood flow (M, PU); cutaneous vascular conductance (CVC = M/MAP); peak hyperemia (Mmax, PU) and maximum cutaneous vascular conductance (CVCmax) during PORH. In the HS group (n = 7), 30 % of the estimated blood volume was taken within 5 min. There was no blood loss in the group of sham-operated animals (Sham, n = 7). The results are presented as Me [25 %;75 %]. The U-Mann-Whitney criterion was used to evaluate intergroup differences. Differences were considered statistically significant at p < 0.05. RESULTS: The groups did not differ at baseline. Blood loss led to a significant decrease in MAP (43 [31;46] vs. 94 [84;104] mmHg), M (11.5 [16.9;7.8] vs 16.7 [20.2;13.9]) and Mmax (18.1 [16.4;21.8] vs. 25.0 [23.0;26.2]) in the HS group compared to the Sham group, respectively. At the same time, both CVC (0.25 [0.23;0.30] vs. 0.16 [0.14;0.21]) and CVCmax (0.55 [0.38;0.49] vs 0.24 [0.23; 0.29]) increased after blood loss in the HS group compared to the Sham group. Arterial blood gas analysis revealed metabolic lactic acidosis in the HS group. CONCLUSION: In this rat model of HS, alterations in cutaneous blood flow are manifested by a decrease in perfusion (M) and the intensity of PORH (Mmax) with a simultaneous increase in vascular conductance (CVC and CVCmax).


Subject(s)
Hyperemia , Shock, Hemorrhagic , Vascular Diseases , Male , Animals , Rats , Shock, Hemorrhagic/diagnosis , Rats, Wistar , Microcirculation , Skin/blood supply , Laser-Doppler Flowmetry , Regional Blood Flow
3.
Int J Mol Sci ; 24(23)2023 Nov 21.
Article in English | MEDLINE | ID: mdl-38068898

ABSTRACT

Ischemic heart disease and its complications, such as myocardial infarction and heart failure, are the leading causes of death in modern society. The adult heart innately lacks the capacity to regenerate the damaged myocardium after ischemic injury. Multiple lines of evidence indicated that stem-cell-based transplantation is one of the most promising treatments for damaged myocardial tissue. Different kinds of stem cells have their advantages for treating ischemic heart disease. One facet of their mechanism is the paracrine effect of the transplanted cells. Particularly promising are stem cells derived from cardiac tissue per se, referred to as cardiosphere-derived cells (CDCs), whose therapeutic effect is mediated by the paracrine mechanism through secretion of multiple bioactive molecules providing immunomodulatory, angiogenic, anti-fibrotic, and anti-inflammatory effects. Although secretome-based therapies are increasingly being used to treat various cardiac pathologies, many obstacles remain because of population heterogeneity, insufficient understanding of potential modulating compounds, and the principles of secretome regulation, which greatly limit the feasibility of this technology. In addition, components of the inflammatory microenvironment in ischemic myocardium may influence the secretome content of transplanted CDCs, thus altering the efficacy of cell therapy. In this work, we studied how Tumor necrosis factor alpha (TNFa), as a key component of the pro-inflammatory microenvironment in damaged myocardium from ischemic injury and heart failure, may affect the secretome content of CDCs and their angiogenic properties. We have shown for the first time that TNFa may act as a promising compound modulating the CDC secretome, which induces its profiling to enhance proangiogenic effects on endothelial cells. These results allow us to elucidate the underlying mechanisms of the impact of the inflammatory microenvironment on transplanted CDCs and may contribute to the optimization of CDC efficiency and the development of the technology for producing the CDC secretome with enhanced proangiogenic properties for cell-free therapy.


Subject(s)
Angiogenesis , Heart Failure , Myocardial Ischemia , Tumor Necrosis Factor-alpha , Humans , Endothelial Cells/metabolism , Heart Failure/metabolism , Myocardial Ischemia/metabolism , Myocytes, Cardiac/metabolism , Secretome , Tumor Necrosis Factor-alpha/metabolism
4.
Int J Mol Sci ; 24(21)2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37958542

ABSTRACT

One of the largest challenges to the implementation of cardiac cell therapy is identifying selective reparative targets to enhance stem/progenitor cell therapeutic efficacy. In this work, we hypothesized that such a target could be an urokinase-type plasminogen activator receptor (uPAR)-a glycosyl-phosphatidyl-inositol-anchored membrane protein, interacting with urokinase. uPAR is able to form complexes with various transmembrane proteins such as integrins, activating intracellular signaling pathway and thus regulating multiple cell functions. We focused on studying the CD117+ population of cardiac mesenchymal progenitor cells (MPCs), expressing uPAR on their surface. It was found that the number of CD117+ MPCs in the heart of the uPAR-/- mice is lower, as well as their ability to proliferate in vitro compared with cells from wild-type animals. Knockdown of uPAR in CD117+ MPCs of wild-type animals was accompanied by a decrease in survival rate and Akt signaling pathway activity and by an increase in the level of caspase activity in these cells. That suggests the role of uPAR in supporting cell survival. After intramyocardial transplantation of uPAR(-) MPCs, reduced cell retention and angiogenesis stimulation were observed in mice with myocardial infarction model compared to uPAR(+) cells transplantation. Taken together, the present results appear to prove a novel mechanism of uPAR action in maintaining the survival and angiogenic properties of CD117+ MPCs. These results emphasize the importance of the uPAR as a potential pharmacological target for the regulation of reparative properties of myocardial mesenchymal progenitor cells.


Subject(s)
Mesenchymal Stem Cells , Myocardium , Receptors, Urokinase Plasminogen Activator , Animals , Mice , Integrins , Mesenchymal Stem Cells/metabolism , Receptors, Urokinase Plasminogen Activator/genetics , Receptors, Urokinase Plasminogen Activator/metabolism , Signal Transduction , Urokinase-Type Plasminogen Activator/genetics , Urokinase-Type Plasminogen Activator/metabolism , Myocardium/cytology
5.
Int J Mol Sci ; 24(2)2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36674896

ABSTRACT

Pulmonary fibrosis is a common and threatening post-COVID-19 complication with poorly resolved molecular mechanisms and no established treatment. The plasminogen activator system, including urokinase (uPA) and urokinase receptor (uPAR), is involved in the pathogenesis of COVID-19 and contributes to the development of lung injury and post-COVID-19 pulmonary fibrosis, although their cellular and molecular underpinnings still remain obscure. The aim of the current study was to assess the role of uPA and uPAR in the pathogenesis of pulmonary fibrosis. We analyzed uPA and uPAR expression in human lung tissues from COVID-19 patients with pulmonary fibrosis using single-cell RNA-seq and immunohistochemistry. We modeled lung fibrosis in Plau-/- and Plaur-/- mice upon bleomycin instillation and explored the effect of uPAR downregulation in A549 and BEAS-2B lung epithelial cells. We found that uPAR expression drastically decreased in the epithelial airway basal cells and monocyte/macrophage cells, whereas uPA accumulation significantly increased in tissue samples of COVID-19 patients. Lung injury and fibrosis in Plaur-/- vs. WT mice upon bleomycin instillation revealed that uPAR deficiency resulted in pro-fibrogenic uPA accumulation, IL-6 and ACE2 upregulation in lung tissues and was associated with severe fibrosis, weight loss and poor survival. uPAR downregulation in A549 and BEAS-2B was linked to an increased N-cadherin expression, indicating the onset of epithelial-mesenchymal transition and potentially contributing to pulmonary fibrosis. Here for the first time, we demonstrate that plasminogen treatment reversed lung fibrosis in Plaur-/- mice: the intravenous injection of 1 mg of plasminogen on the 21st day of bleomycin-induced fibrosis resulted in a more than a two-fold decrease in the area of lung fibrosis as compared to non-treated mice as evaluated by the 42nd day. The expression and function of the plasminogen activator system are dysregulated upon COVID-19 infection, leading to excessive pulmonary fibrosis and worsening the prognosis. The potential of plasminogen as a life-saving treatment for non-resolving post-COVID-19 pulmonary fibrosis warrants further investigation.


Subject(s)
COVID-19 , Lung Injury , Pulmonary Fibrosis , Humans , Mice , Animals , Pulmonary Fibrosis/metabolism , Urokinase-Type Plasminogen Activator/genetics , Urokinase-Type Plasminogen Activator/metabolism , Lung Injury/chemically induced , Lung Injury/metabolism , COVID-19/complications , Fibrosis , Plasminogen , Bleomycin/toxicity
6.
Brain Sci ; 11(11)2021 Nov 07.
Article in English | MEDLINE | ID: mdl-34827474

ABSTRACT

The thromboembolic ischemia model is one of the most applicable for studying ischemic stroke in humans. The aim of this study was to develop a novel thromboembolic stroke model, allowing, by affordable tools, to reproduce cerebral infarction in rats. In the experimental group, the left common carotid artery, external carotid artery, and pterygopalatine branch of maxillary artery were ligated. A blood clot that was previously formed (during a 20 min period, in a catheter and syringe, by mixing with a thromboplastin solution and CaCl2) was injected into the left internal carotid artery. After 10 min, the catheter was removed, and the incision was sutured. The neurological status of the animals was evaluated using a 20-point scale. Histological examination of brain tissue was performed 6, 24, 72 h, and 6 days post-stroke. All groups showed motor and behavioral disturbances 24 h after surgery, which persisted throughout the study period. A histological examination revealed necrotic foci of varying severity in the cortex and subcortical regions of the ipsilateral hemisphere, for all experimental groups. A decrease in the density of hippocampal pyramidal neurons was revealed. Compared with existing models, the proposed ischemic stroke model significantly reduces surgical time, does not require an expensive operating microscope, and consistently reproduces brain infarction in the area of the middle cerebral artery supply.

7.
Int J Mol Sci ; 21(24)2020 Dec 16.
Article in English | MEDLINE | ID: mdl-33339427

ABSTRACT

Cell therapy of the post-infarcted myocardium is still far from clinical use. Poor survival of transplanted cells, insufficient regeneration, and replacement of the damaged tissue limit the potential of currently available cell-based techniques. In this study, we generated a multilayered construct from adipose-derived mesenchymal stromal cells (MSCs) modified to secrete stem cell factor, SCF. In a rat model of myocardium infarction, we show that transplantation of SCF producing cell sheet induced activation of the epicardium and promoted the accumulation of c-kit positive cells in ischemic muscle. Morphometry showed the reduction of infarct size (16%) and a left ventricle expansion index (0.12) in the treatment group compared to controls (24-28%; 0.17-0.32). The ratio of viable myocardium was more than 1.5-fold higher, reaching 49% compared to the control (28%) or unmodified cell sheet group (30%). Finally, by day 30 after myocardium infarction, SCF-producing cell sheet transplantation increased left ventricle ejection fraction from 37% in the control sham-operated group to 53%. Our results suggest that, combining the genetic modification of MSCs and their assembly into a multilayered construct, we can provide prolonged pleiotropic effects to the damaged heart, induce endogenous regenerative processes, and improve cardiac function.


Subject(s)
Mesenchymal Stem Cell Transplantation/methods , Mesenchymal Stem Cells/metabolism , Myocardial Infarction/therapy , Pericardium/metabolism , Stem Cell Factor/metabolism , Adipose Tissue/cytology , Animals , Cells, Cultured , HEK293 Cells , Humans , Male , Pericardium/physiology , Rats , Rats, Wistar , Regeneration , Stem Cell Factor/genetics
8.
Int J Mol Sci ; 20(12)2019 Jun 24.
Article in English | MEDLINE | ID: mdl-31238604

ABSTRACT

Cell therapy remains a promising approach for the treatment of cardiovascular diseases. In this regard, the contemporary trend is the development of methods to overcome low cell viability and enhance their regenerative potential. In the present study, we evaluated the therapeutic potential of gene-modified adipose-derived stromal cells (ADSC) that overexpress hepatocyte growth factor (HGF) in a mice hind limb ischemia model. Angiogenic and neuroprotective effects were assessed following ADSC transplantation in suspension or in the form of cell sheet. We found superior blood flow restoration, tissue vascularization and innervation, and fibrosis reduction after transplantation of HGF-producing ADSC sheet compared to other groups. We suggest that the observed effects are determined by pleiotropic effects of HGF, along with the multifactorial paracrine action of ADSC which remain viable and functionally active within the engineered cell construct. Thus, we demonstrated the high therapeutic potential of the utilized approach for skeletal muscle recovery after ischemic damage associated with complex tissue degenerative effects.


Subject(s)
Adipose Tissue/cytology , Hepatocyte Growth Factor/biosynthesis , Muscle Fibers, Skeletal/cytology , Muscle Fibers, Skeletal/metabolism , Muscle, Skeletal/blood supply , Muscle, Skeletal/metabolism , Stromal Cells/metabolism , Stromal Cells/transplantation , Animals , Cell Culture Techniques , Cell Differentiation/genetics , Cell Movement/drug effects , Culture Media, Conditioned/pharmacology , Disease Models, Animal , Gene Expression , Hepatocyte Growth Factor/genetics , Humans , Ischemia , Mice , Muscle, Skeletal/drug effects , Muscle, Skeletal/pathology , Neovascularization, Physiologic/drug effects , Neovascularization, Physiologic/genetics , Neuroglia/cytology , Neuroglia/drug effects , Neuroglia/metabolism , Neuronal Outgrowth/drug effects
9.
PLoS One ; 13(5): e0197566, 2018.
Article in English | MEDLINE | ID: mdl-29787588

ABSTRACT

Since development of plasmid gene therapy for therapeutic angiogenesis by J. Isner this approach was an attractive option for ischemic diseases affecting large cohorts of patients. However, first placebo-controlled clinical trials showed its limited efficacy questioning further advance to practice. Thus, combined methods using delivery of several angiogenic factors got into spotlight as a way to improve outcomes. This study provides experimental proof of concept for a combined approach using simultaneous delivery of VEGF165 and HGF genes to alleviate consequences of myocardial infarction (MI). However, recent studies suggested that angiogenic growth factors have pleiotropic effects that may contribute to outcome so we expanded focus of our work to investigate potential mechanisms underlying action of VEGF165, HGF and their combination in MI. Briefly, Wistar rats underwent coronary artery ligation followed by injection of plasmid bearing VEGF165 or HGF or mixture of these. Histological assessment showed decreased size of post-MI fibrosis in both-VEGF165- or HGF-treated animals yet most prominent reduction of collagen deposition was observed in VEGF165+HGF group. Combined delivery group rats were the only to show significant increase of left ventricle (LV) wall thickness. We also found dilatation index improved in HGF or VEGF165+HGF treated animals. These effects were partially supported by our findings of c-kit+ cardiac stem cell number increase in all treated animals compared to negative control. Sporadic Ki-67+ mature cardiomyocytes were found in peri-infarct area throughout study groups with comparable effects of VEGF165, HGF and their combination. Assessment of vascular density in peri-infarct area showed efficacy of both-VEGF165 and HGF while combination of growth factors showed maximum increase of CD31+ capillary density. To our surprise arteriogenic response was limited in HGF-treated animals while VEGF165 showed potent positive influence on a-SMA+ blood vessel density. The latter hinted to evaluate infiltration of monocytes as they are known to modulate arteriogenic response in myocardium. We found that monocyte infiltration was driven by VEGF165 and reduced by HGF resulting in alleviation of VEGF-stimulated monocyte taxis after combined delivery of these 2 factors. Changes of monocyte infiltration were concordant with a-SMA+ arteriole density so we tested influence of VEGF165 or HGF on endothelial cells (EC) that mediate angiogenesis and inflammatory response. In a series of in vitro experiments we found that VEGF165 and HGF regulate production of inflammatory chemokines by human EC. In particular MCP-1 levels changed after treatment by recombinant VEGF, HGF or their combination and were concordant with NF-κB activation and monocyte infiltration in corresponding groups in vivo. We also found that both-VEGF165 and HGF upregulated IL-8 production by EC while their combination showed additive type of response reaching peak values. These changes were HIF-2 dependent and siRNA-mediated knockdown of HIF-2α abolished effects of VEGF165 and HGF on IL-8 production. To conclude, our study supports combined gene therapy by VEGF165 and HGF to treat MI and highlights neglected role of pleiotropic effects of angiogenic growth factors that may define efficacy via regulation of inflammatory response and endothelial function.


Subject(s)
Genetic Therapy/methods , Hepatocyte Growth Factor/genetics , Hepatocyte Growth Factor/therapeutic use , Myocardial Infarction/therapy , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/therapeutic use , Animals , Apoptosis , Basic Helix-Loop-Helix Transcription Factors/metabolism , Cell Proliferation , Chemokine CCL2/biosynthesis , Disease Models, Animal , Gene Expression , Hepatocyte Growth Factor/metabolism , Human Umbilical Vein Endothelial Cells , Humans , Interleukin-8/biosynthesis , Male , Monocytes/metabolism , Monocytes/pathology , Myocardial Infarction/pathology , Myocardial Infarction/physiopathology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , NF-kappa B/metabolism , Neovascularization, Physiologic/genetics , Neovascularization, Physiologic/physiology , Plasmids/administration & dosage , Plasmids/genetics , Rats , Rats, Wistar , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Recombinant Proteins/therapeutic use , Vascular Endothelial Growth Factor A/metabolism
10.
J Biol Chem ; 292(50): 20528-20543, 2017 12 15.
Article in English | MEDLINE | ID: mdl-28972182

ABSTRACT

Lymphangioleiomyomatosis (LAM) is a fatal lung disease associated with germline or somatic inactivating mutations in tuberous sclerosis complex genes (TSC1 or TSC2). LAM is characterized by neoplastic growth of smooth muscle-α-actin-positive cells that destroy lung parenchyma and by the formation of benign renal neoplasms called angiolipomas. The mammalian target of rapamycin complex 1 (mTORC1) inhibitor rapamycin slows progression of these diseases but is not curative and associated with notable toxicity at clinically effective doses, highlighting the need for better understanding LAM's molecular etiology. We report here that LAM lesions and angiomyolipomas overexpress urokinase-type plasminogen activator (uPA). Tsc1-/- and Tsc2-/- mouse embryonic fibroblasts expressed higher uPA levels than their WT counterparts, resulting from the TSC inactivation. Inhibition of uPA expression in Tsc2-null cells reduced the growth and invasiveness and increased susceptibility to apoptosis. However, rapamycin further increased uPA expression in TSC2-null tumor cells and immortalized TSC2-null angiomyolipoma cells, but not in cells with intact TSC. Induction of glucocorticoid receptor signaling or forkhead box (FOXO) 1/3 inhibition abolished the rapamycin-induced uPA expression in TSC-compromised cells. Moreover, rapamycin-enhanced migration of TSC2-null cells was inhibited by the uPA inhibitor UK122, dexamethasone, and a FOXO inhibitor. uPA-knock-out mice developed fewer and smaller TSC2-null lung tumors, and introduction of uPA shRNA in tumor cells or amiloride-induced uPA inhibition reduced tumorigenesis in vivo These findings suggest that interference with the uPA-dependent pathway, when used along with rapamycin, might attenuate LAM progression and potentially other TSC-related disorders.


Subject(s)
Lung Neoplasms/metabolism , Lung/metabolism , Lymphangioleiomyomatosis/metabolism , Mutation , Neoplasm Proteins/metabolism , Tumor Suppressor Proteins/metabolism , Urokinase-Type Plasminogen Activator/metabolism , Angiomyolipoma/drug therapy , Angiomyolipoma/genetics , Angiomyolipoma/metabolism , Angiomyolipoma/pathology , Animals , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cell Line, Tumor , Gene Expression Regulation, Neoplastic/drug effects , Humans , Kidney Neoplasms/drug therapy , Kidney Neoplasms/genetics , Kidney Neoplasms/metabolism , Kidney Neoplasms/pathology , Lung/drug effects , Lung/pathology , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lymphangioleiomyomatosis/drug therapy , Lymphangioleiomyomatosis/genetics , Lymphangioleiomyomatosis/pathology , Mice, Inbred C57BL , Mice, Knockout , Neoplasm Invasiveness/pathology , Neoplasm Invasiveness/prevention & control , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/genetics , Neoplasm Transplantation , RNA Interference , Tuberous Sclerosis Complex 1 Protein , Tuberous Sclerosis Complex 2 Protein , Tumor Burden/drug effects , Tumor Suppressor Proteins/genetics , Urokinase-Type Plasminogen Activator/antagonists & inhibitors , Urokinase-Type Plasminogen Activator/genetics
11.
Tissue Cell ; 49(1): 64-71, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28041835

ABSTRACT

Cell sheets (CS) from c-kit+ cardiac stem cell (CSC) hold a potential for application in regenerative medicine. However, manufacture of CS may require thermoresponsive dishes, which increases cost and puts one in dependence on specific materials. Alternative approaches were established recently and we conducted a short study to compare approaches for detachment of CS from c-kit+ CSC. Our in-house developed method using chelation by Versene solution was compared to UpCell™ thermoresponsive plates in terms of CSC proliferation, viability, gap junction formation and engraftment in a model of myocardial infarction. Use of Versene solution instead of thermoresponsive dishes resulted in comparable CS thickness (approximately 100mcm), cell proliferation rate and no signs of apoptosis detected in both types of constructs. However, we observed a minor reduction of gap junction count in Versene-treated CS. At day 30 after delivery to infarcted myocardium both types of CS retained at the site of transplantation and contained comparable amounts of proliferating cells indicating engraftment. Thus, we may conclude that detachment of CS from c-kit+ CSC using Versene solution followed by mechanical treatment is an alternative to thermoresponsive plates allowing use of routinely available materials to generate constructs for cardiac repair.


Subject(s)
Cell Culture Techniques/methods , Cell Separation/methods , Myocardial Infarction/therapy , Stem Cell Transplantation , Animals , Apoptosis/genetics , Cell Proliferation/drug effects , Cell Survival/drug effects , Edetic Acid/pharmacology , Gap Junctions/drug effects , Humans , Myocardial Infarction/pathology , Myocardium/pathology , Rats , Regenerative Medicine , Stem Cells/drug effects
12.
J Transl Med ; 11: 138, 2013 Jun 06.
Article in English | MEDLINE | ID: mdl-23742074

ABSTRACT

BACKGROUND: Modified cell-based angiogenic therapy has become a promising novel strategy for ischemic heart and limb diseases. Most studies focused on myoblast, endothelial cell progenitors or bone marrow mesenchymal stromal cells transplantation. Yet adipose-derived stromal cells (in contrast to bone marrow) are abundantly available and can be easily harvested during surgery or liposuction. Due to high paracrine activity and availability ADSCs appear to be a preferable cell type for cardiovascular therapy. Still neither genetic modification of human ADSC nor in vivo therapeutic potential of modified ADSC have been thoroughly studied. Presented work is sought to evaluate angiogenic efficacy of modified ADSCs transplantation to ischemic tissue. MATERIALS AND METHODS: Human ADSCs were transduced using recombinant adeno-associated virus (rAAV) serotype 2 encoding human VEGF165. The influence of genetic modification on functional properties of ADSCs and their angiogenic potential in animal models were studied. RESULTS: We obtained AAV-modified ADSC with substantially increased secretion of VEGF (VEGF-ADSCs). Transduced ADSCs retained their adipogenic and osteogenic differentiation capacities and adhesion properties. The level of angiopoetin-1 mRNA was significantly increased in VEGF-ADSC compared to unmodified cells yet expression of FGF-2, HGF and urokinase did not change. Using matrigel implant model in mice it was shown that VEGF-ADSC substantially stimulated implant vascularization with paralleling increase of capillaries and arterioles. In murine hind limb ischemia test we found significant reperfusion and revascularization after intramuscular transplantation of VEGF-ADSC compared to controls with no evidence of angioma formation. CONCLUSIONS: Transplantation of AAV-VEGF- gene modified hADSC resulted in stronger therapeutic effects in the ischemic skeletal muscle and may be a promising clinical treatment for therapeutic angiogenesis.


Subject(s)
Adipose Tissue/cytology , Cell Transplantation/methods , Ischemia/therapy , Muscle, Skeletal/pathology , Neovascularization, Physiologic , Stromal Cells/metabolism , Vascular Endothelial Growth Factor A/metabolism , Adult , Animals , Cell Adhesion , Cell Proliferation , Collagen/chemistry , Culture Media, Conditioned/pharmacology , Dependovirus/metabolism , Drug Combinations , Gene Expression Regulation , HEK293 Cells , Humans , Laminin/chemistry , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Middle Aged , Proteoglycans/chemistry , Stromal Cells/cytology
13.
PLoS One ; 7(6): e38776, 2012.
Article in English | MEDLINE | ID: mdl-22719942

ABSTRACT

Increased interest in development of combined gene therapy emerges from results of recent clinical trials that indicate good safety yet unexpected low efficacy of "single-gene" administration. Multiple studies showed that vascular endothelial growth factor 165 aminoacid form (VEGF165) and hepatocyte growth factor (HGF) can be used for induction of angiogenesis in ischemic myocardium and skeletal muscle. Gene transfer system composed of a novel cytomegalovirus-based (CMV) plasmid vector and codon-optimized human VEGF165 and HGF genes combined with intramuscular low-voltage electroporation was developed and tested in vitro and in vivo. Studies in HEK293T cell culture, murine skeletal muscle explants and ELISA of tissue homogenates showed efficacy of constructed plasmids. Functional activity of angiogenic proteins secreted by HEK293T after transfection by induction of tube formation in human umbilical vein endothelial cell (HUVEC) culture. HUVEC cells were used for in vitro experiments to assay the putative signaling pathways to be responsible for combined administration effect one of which could be the ERK1/2 pathway. In vivo tests of VEGF165 and HGF genes co-transfer were conceived in mouse model of hind limb ischemia. Intramuscular administration of plasmid encoding either VEGF165 or HGF gene resulted in increased perfusion compared to empty vector administration. Mice injected with a mixture of two plasmids (VEGF165+HGF) showed significant increase in perfusion compared to single plasmid injection. These findings were supported by increased CD31+ capillary and SMA+ vessel density in animals that received combined VEGF165 and HGF gene therapy compared to single gene therapy. Results of the study suggest that co-transfer of VEGF and HGF genes renders a robust angiogenic effect in ischemic skeletal muscle and may present interest as a potential therapeutic combination for treatment of ischemic disorders.


Subject(s)
Hepatocyte Growth Factor/genetics , Ischemia/pathology , Muscle, Skeletal/blood supply , Neovascularization, Pathologic/genetics , Transfection , Vascular Endothelial Growth Factor A/genetics , Animals , Blotting, Western , Enzyme-Linked Immunosorbent Assay , HEK293 Cells , Human Umbilical Vein Endothelial Cells , Humans , Male , Mice , Mice, Inbred C57BL , Muscle, Skeletal/pathology
14.
Tissue Eng Part A ; 15(8): 2039-50, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19368510

ABSTRACT

Adipose-derived stromal cells (ASCs) are suggested to be potent candidates for cell therapy of ischemic conditions due to their ability to stimulate blood vessel growth. ASCs produce many angiogenic and anti-apoptotic growth factors, and their secretion is significantly enhanced by hypoxia. Utilizing a Matrigel implant model, we showed that hypoxia-treated ASCs stimulated angiogenesis as well as maturation of the newly formed blood vessels in vivo. To elucidate mechanisms of ASC angiogenic action, we used a co-culture model of ASCs with cells isolated from early postnatal hearts (cardiomyocyte fraction, CMF). CMF contained mature cardiomyocytes, endothelial cells, and progenitor cells. On the second day of culture CMF cells formed spontaneously beating colonies with CD31+ capillary-like structures outgrowing from those cell aggregates. However, these vessel-like structures were not stable, and disassembled within next 5 days. Co-culturing of CMF with ASCs resulted in the formation of stable and branched CD31+ vessel-like structures. Using immunomagnetic depletion of CMF from vascular cells as well as incubation of CMF with mitomycin C-treated ASCs, we showed that in co-culture ASCs enhance blood vessel growth not only by production of paracrine-acting factors but also by promoting the endothelial differentiation of cardiac progenitor cells. All these mechanisms of actions could be beneficial for the stimulation of angiogenesis in ischemic tissues by ASCs administration.


Subject(s)
Adipose Tissue/cytology , Angiogenesis Inducing Agents/metabolism , Blood Vessels/cytology , Cell Differentiation , Neovascularization, Physiologic , Stem Cells/cytology , Stromal Cells/cytology , Animals , Blood Vessels/growth & development , Cell Fractionation , Cell Hypoxia , Coculture Techniques , Collagen/metabolism , Colony-Forming Units Assay , Drug Combinations , Endothelial Cells/cytology , Endothelial Cells/metabolism , Gene Expression Regulation , Implants, Experimental , Laminin/metabolism , Male , Mice , Myocytes, Cardiac/cytology , Myocytes, Cardiac/metabolism , Neovascularization, Physiologic/genetics , Proteoglycans/metabolism , Rats , Rats, Wistar , Stem Cells/metabolism , Stromal Cells/metabolism
15.
Mol Ther ; 15(11): 1939-46, 2007 Nov.
Article in English | MEDLINE | ID: mdl-17653104

ABSTRACT

Urokinase plasminogen activator (uPA) is required for both endogenous and vascular endothelial growth factor (VEGF)-augmented angiogenesis in normal tissues, leading us to hypothesize that uPA augmentation by gene transfer might promote angiogenesis in ischemic tissues. Overexpression of uPA was studied in rat myocardial infarction (MI) and mouse hind limb ischemia models and compared with VEGF overexpression effects. Animals were divided into control and three experimental groups (n = 6), receiving intramuscular injections of plasmids as follows: (i) control (empty vector or expressing beta-galactosidase); (ii) uPA; (iii) VEGF(165); (iv) a 1:1 mixture of uPA and VEGF(165). The capillary densities in both ischemic models were greater (P < 0.05) in tissues treated with uPA, VEGF, or a combination of both than in controls. Infarct size was reduced in hearts from uPA and VEGF experimental groups compared with controls (P < 0.05). Local overexpression of uPA induced a marked increase in the number of macrophages and myofibroblasts present within infarcts. Hind limb blood flow was greater in all experimental groups by day 10 (P < 0.05). Overall, the effects of uPA and VEGF were uniformly comparable. Additional analysis revealed association of local edema with VEGF but not with uPA treatment. This study established that uPA gene therapy effectively induces functionally significant angiogenesis in models of acute MI and hind limb ischemia.


Subject(s)
Genetic Therapy , Ischemia/enzymology , Ischemia/pathology , Myocardium/enzymology , Myocardium/pathology , Neovascularization, Pathologic/enzymology , Urokinase-Type Plasminogen Activator/metabolism , Animals , Body Weight , Cell Movement , Gene Expression , Hindlimb/metabolism , Humans , Ischemia/genetics , Ischemia/therapy , Leukocytes, Mononuclear/cytology , Male , Mice , Models, Animal , Plasmids/genetics , Rats , Transfection , Urokinase-Type Plasminogen Activator/genetics , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...