Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Lett ; 47(5): 1174-1177, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-35230320

ABSTRACT

We show theoretically that stable dark solitons can exist in the presence of pure quartic dispersion, and also in the presence of both quadratic and quartic dispersive effects, displaying a much greater variety of possible solutions and dynamics than for pure quadratic dispersion. The interplay of the two dispersion orders may lead to oscillatory non-vanishing tails, which enables the possibility of bound, potentially stable, multi-soliton states. Dark soliton-like states that connect to low-amplitude oscillations are also shown to be possible. Dynamical evolution results corroborate the stability picture obtained, and possible avenues for dark soliton generation are explored.

2.
Phys Rev E Stat Nonlin Soft Matter Phys ; 75(4 Pt 1): 041111, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17500869

ABSTRACT

We consider the classical evolution of a lattice of nonlinear coupled oscillators for a special case of initial conditions resembling the equilibrium state of a macroscopic thermal system at the critical point. The displacements of the oscillators define initially a fractal measure on the lattice associated with the scaling properties of the order parameter fluctuations in the corresponding critical system. Assuming a sudden symmetry breaking (quench), leading to a change in the equilibrium position of each oscillator, we investigate in some detail the deformation of the initial fractal geometry as time evolves. In particular, we show that traces of the critical fractal measure can be sustained for large times, and we extract the properties of the chain that determine the associated time scales. Our analysis applies generally to critical systems for which, after a slow developing phase where equilibrium conditions are justified, a rapid evolution, induced by a sudden symmetry breaking, emerges on time scales much shorter than the corresponding relaxation or observation time. In particular, it can be used in the fireball evolution in a heavy-ion collision experiment, where the QCD critical point emerges, or in the study of evolving fractals of astrophysical and cosmological scales, and may lead to determination of the initial critical properties of the Universe through observations in the symmetry-broken phase.

SELECTION OF CITATIONS
SEARCH DETAIL
...