Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Med Chem ; 21(3): 693-702, 2013 Feb 01.
Article in English | MEDLINE | ID: mdl-23276449

ABSTRACT

This report describes the synthesis of analogs of curcumin, and their analysis in acting as nuclear receptor specific agonists. Curcumin (CM), a turmeric-derived bioactive polyphenol found in curry, has recently been identified as a ligand for the vitamin D receptor (VDR), and it is possible that CM exerts some of its bioeffects via direct binding to VDR and/or other proteins in the nuclear receptor superfamily. Using mammalian-two-hybrid (M2H) and vitamin D responsive element (VDRE) biological assay systems, we tested CM and 11 CM synthetic analogs for their ability to activate VDR signaling. The M2H assay revealed that RXR and VDR association was induced by CM and several of its analogs. VDRE-based assays demonstrated that pure curcumin and eight CM analogs activated transcription of a luciferase plasmid at levels approaching that of the endocrine 1,25 dihydroxyvitamin D(3) (1,25D) ligand in human colon cancer cells (HCT-116). Additional experiments were performed in HCT-116 utilizing various nuclear receptors and hormone responsive elements to determine the receptor specificity of curcumin binding. CM did not appear to activate transcription in a glucocorticoid responsive system. However, CM along with several analogs elicited transcriptional activation in retinoic acid and retinoid X receptor (RXR) responsive systems. M2H assays using RXR-RXR, VDR-SRC1 and VDR-DRIP revealed that CM and select analogs stimulate RXR homodimerization and VDR-coactivator interactions. These studies may lead to the discovery of novel curcumin analogs that activate nuclear receptors, including RXR, RAR and VDR, resulting in similar health benefits as those for vitamins A and D, such as lowering the risk of epithelial and colon cancers.


Subject(s)
Curcumin/pharmacology , Receptors, Cytoplasmic and Nuclear/agonists , Curcumin/chemical synthesis , Curcumin/chemistry , HCT116 Cells , Humans , Molecular Structure , Structure-Activity Relationship , Tumor Cells, Cultured
2.
ChemMedChem ; 7(9): 1551-66, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22927238

ABSTRACT

The synthesis of halogenated analogues of 4-[1-(3,5,5,8,8-pentamethyl-5,6,7,8-tetrahydro-2-naphthyl)ethynyl]benzoic acid (1), known commonly as bexarotene, and their evaluation for retinoid X receptor (RXR)-specific agonist performance is described. Compound 1 is FDA approved to treat cutaneous T-cell lymphoma (CTCL); however, bexarotene treatment can induce hypothyroidism and elevated triglyceride levels, presumably by disrupting RXR heterodimer pathways for other nuclear receptors. The novel halogenated analogues in this study were modeled and assessed for their ability to bind to RXR and stimulate RXR homodimerization in an RXRE-mediated transcriptional assay as well as an RXR mammalian-2-hybrid assay. In an array of eight novel compounds, four analogues were discovered to promote RXR-mediated transcription with EC(50) values similar to that of 1 and are selective RXR agonists. Our approach also uncovered a periodic trend of increased binding and homodimerization of RXR when substituting a halogen atom for a proton ortho to the carboxylic acid on 1.


Subject(s)
Anticarcinogenic Agents/chemistry , Anticarcinogenic Agents/pharmacology , Retinoid X Receptors/agonists , Tetrahydronaphthalenes/chemistry , Tetrahydronaphthalenes/pharmacology , Animals , Apoptosis/drug effects , Bexarotene , Cell Line, Tumor , Halogenation , Humans , Lymphoma, T-Cell, Cutaneous/drug therapy , Lymphoma, T-Cell, Cutaneous/metabolism , Molecular Docking Simulation , Neoplasms/drug therapy , Neoplasms/metabolism , Protein Multimerization/drug effects , Retinoid X Receptors/chemistry , Retinoid X Receptors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...