Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 27(23): 13983-7, 2011 Dec 06.
Article in English | MEDLINE | ID: mdl-22054300

ABSTRACT

We demonstrate the accurate nanoscale mapping of near-surface loss and storage moduli on a polystyrene-polypropylene blend with contact resonance force microscopy (CR-FM). These viscoelastic properties are extracted from spatially resolved maps of the contact resonance frequency and quality factor of the AFM cantilever. We consider two methods of data acquisition: (i) discrete stepping between mapping points and (ii) continuous scanning. For point mapping and low-speed scanning, the values of the relative loss and storage modulus are in good agreement with the time-temperature superposition of low-frequency dynamic mechanical analysis measurements to the high frequencies probed by CR-FM.

2.
Nanotechnology ; 22(35): 355705, 2011 Sep 02.
Article in English | MEDLINE | ID: mdl-21821874

ABSTRACT

We report on a technique that simultaneously quantifies the contact stiffness and dissipation of an AFM cantilever in contact with a surface, which can ultimately be used for quantitative nanomechanical characterization of surfaces. The method is based on measuring the contact resonance frequency using dual AC resonance tracking (DART), where the amplitude and phase of the cantilever response are monitored at two frequencies on either side of the contact resonance. By modelling the tip-sample contact as a driven damped harmonic oscillator, the four measured quantities (two amplitudes and two phases) allow the four model parameters, namely, drive amplitude, drive phase, resonance frequency and quality factor, to be calculated. These mechanical parameters can in turn be used to make quantitative statements about localized sample properties. We apply the method to study the electromechanical coupling coefficients in ferroelectric materials and the storage and loss moduli in viscoelastic materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...