Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Cell Physiol ; 234(5): 7569-7578, 2019 05.
Article in English | MEDLINE | ID: mdl-30368818

ABSTRACT

Stem cells are often transplanted with scaffolds for tissue regeneration; however, how the mechanical property of a scaffold modulates stem cell fate in vivo is not well understood. Here we investigated how matrix stiffness modulates stem cell differentiation in a model of vascular graft transplantation. Multipotent neural crest stem cells (NCSCs) were differentiated from induced pluripotent stem cells, embedded in the hydrogel on the outer surface of nanofibrous polymer grafts, and implanted into rat carotid arteries by anastomosis. After 3 months, NCSCs differentiated into smooth muscle cells (SMCs) near the outer surface of the polymer grafts; in contrast, NCSCs differentiated into glial cells in the most part of the hydrogel. Atomic force microscopy demonstrated a stiffer matrix near the polymer surface but much lower stiffness away from the polymer graft. Consistently, in vitro studies confirmed that stiff surface induced SMC genes whereas soft surface induced glial genes. These results suggest that the scaffold's mechanical properties play an important role in directing stem cell differentiation in vivo, which has important implications in biomaterials design for stem cell delivery and tissue engineering.


Subject(s)
Cell Differentiation/physiology , Neural Crest/cytology , Neural Stem Cells/cytology , Animals , Cell Differentiation/drug effects , Cells, Cultured , Humans , Hydrogels/pharmacology , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/drug effects , Multipotent Stem Cells/cytology , Multipotent Stem Cells/drug effects , Myocytes, Smooth Muscle/cytology , Myocytes, Smooth Muscle/drug effects , Nanofibers/chemistry , Neural Crest/drug effects , Neural Stem Cells/drug effects , Neuroglia/cytology , Neuroglia/drug effects , Polymers/chemistry , Rats , Tissue Engineering/methods , Tissue Scaffolds
2.
Biomaterials ; 32(16): 3921-30, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21397942

ABSTRACT

Bone marrow mesenchymal stem cells (MSCs) are a valuable cell source for tissue engineering and regenerative medicine. Transforming growth factor ß (TGF-ß) can promote MSC differentiation into either smooth muscle cells (SMCs) or chondrogenic cells. Here we showed that the stiffness of cell adhesion substrates modulated these differential effects. MSCs on soft substrates had less spreading, fewer stress fibers and lower proliferation rate than MSCs on stiff substrates. MSCs on stiff substrates had higher expression of SMC markers α-actin and calponin-1; in contrast, MSCs on soft substrates had a higher expression of chondrogenic marker collagen-II and adipogenic marker lipoprotein lipase (LPL). TGF-ß increased SMC marker expression on stiff substrates. However, TGF-ß increased chondrogenic marker expression and suppressed adipogenic marker expression on soft substrates, while adipogenic medium and soft substrates induced adipogenic differentiation effectively. Rho GTPase was involved in the expression of all aforementioned lineage markers, but did not account for the differential effects of substrate stiffness. In addition, soft substrates did not significantly affect Rho activity, but inhibited Rho-induced stress fiber formation and α-actin assembly. Further analysis showed that MSCs on soft substrates had weaker cell adhesion, and that the suppression of cell adhesion strength mimicked the effects of soft substrates on the lineage marker expression. These results provide insights of how substrate stiffness differentially regulates stem cell differentiation, and have significant implications for the design of biomaterials with appropriate mechanical property for tissue regeneration.


Subject(s)
Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/drug effects , Transforming Growth Factor beta/pharmacology , Acrylic Resins/chemistry , Cell Adhesion , Cell Differentiation/drug effects , Cell Proliferation , Cells, Cultured , Collagen Type II/metabolism , Cytoskeleton/metabolism , Humans , Immunoblotting , Lipoprotein Lipase/metabolism , Mesenchymal Stem Cells/metabolism , Polymerase Chain Reaction , Smad2 Protein/metabolism , Smad3 Protein/metabolism , rho GTP-Binding Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...