Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Bioresour Technol ; 101(14): 5571-7, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20163957

ABSTRACT

In this study, a plasmatron reactor was used for gasifying the waste of distillers grains at different temperatures (773, 873, 973 K) and water flow rates (1, 2, 3 mL min(-1)), which were heated to produce steam. Among all the gas products, syngas was the major component (88.5 wt.% or 94.66 vol.%) with temperatures yielding maximum concentrations at 873 K with a relatively high reaction rate. The maximum concentrations regarding gaseous production occurring times are all below 1 min. With the increase of steam, the recovery mass yield of syngas also increases from 34.14 to 45.47 approximately 54.66 wt.% at 873 K. Water-gas reactions and steam-methane reforming reactions advance the production of syngas with the increase of steam. Furthermore, the water-shift reaction also increases in the context of steam gasification which leads to the decrease of CO(2) at the same time.


Subject(s)
Biotechnology/methods , Ethanol/chemistry , Biomass , Carbon Dioxide/chemistry , Carbon Monoxide/chemistry , Edible Grain/chemistry , Gases/chemistry , Methane/chemistry , Steam , Temperature , Time Factors , Water/chemistry
2.
Bioresour Technol ; 101(2): 761-8, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19766489

ABSTRACT

The aim of this work was to study the feasibility and operation performance of plasma torch pyrolysis of biomass wastes, taking rice straw as the target material. This novel method has several advantages including high heating rate, short heating time, no viscous tar and low residual char (7.45-13.78 wt.%) or lava. The productions of CO and H(2) are the major components (91.85-94.14 vol.%) in the gas products with relatively high reaction rates. The maximum concentrations of gaseous products occurring times are all below 1 min. Almost 90% of gaseous products were appeared in 4 min reaction time. The yield of H(2) increases with the increase of input power or temperature. With the increase of moisture (5-55 wt.%), the mass yields of H(2) and CO(2) also increase from the H(2)O decomposition. However, due to the CO(2) production, the accumulated volume fraction of syngas decreases with the increase of moisture.


Subject(s)
Bioelectric Energy Sources , Hot Temperature , Oryza , Biomass
SELECTION OF CITATIONS
SEARCH DETAIL
...