Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 14332, 2024 06 21.
Article in English | MEDLINE | ID: mdl-38906973

ABSTRACT

Spinocerebellar ataxia type 7 (SCA7) is a progressive neurodegenerative disorder resulting from abnormal expansion of an uninterrupted polyglutamine (polyQ) repeat in its disease protein, ataxin-7 (ATXN7). ATXN7 is part of Spt-Ada-Gcn5 acetyltransferase (SAGA), an evolutionarily conserved transcriptional coactivation complex with critical roles in chromatin remodeling, cell signaling, neurodifferentiation, mitochondrial health and autophagy. SCA7 is dominantly inherited and characterized by genetic anticipation and high repeat-length instability. Patients with SCA7 experience progressive ataxia, atrophy, spasticity, and blindness. There is currently no cure for SCA7, and therapies are aimed at alleviating symptoms to increase quality of life. Here, we report novel Drosophila lines of SCA7 with polyQ repeats in wild-type and human disease patient range. We find that ATXN7 expression has age- and polyQ repeat length-dependent reduction in fruit fly survival and retinal instability, concomitant with increased ATXN7 protein aggregation. These new lines will provide important insight on disease progression that can be used in the future to identify therapeutic targets for SCA7 patients.


Subject(s)
Ataxin-7 , Disease Models, Animal , Peptides , Spinocerebellar Ataxias , Animals , Spinocerebellar Ataxias/genetics , Spinocerebellar Ataxias/pathology , Spinocerebellar Ataxias/metabolism , Ataxin-7/genetics , Ataxin-7/metabolism , Humans , Peptides/metabolism , Peptides/genetics , Drosophila/genetics , Animals, Genetically Modified , Disease Progression , Drosophila melanogaster/genetics , Retina/metabolism , Retina/pathology , Drosophila Proteins/genetics , Drosophila Proteins/metabolism
2.
Res Sq ; 2023 Nov 23.
Article in English | MEDLINE | ID: mdl-38045332

ABSTRACT

Spinocerebellar ataxia type 7 (SCA7) is a progressive neurodegenerative disorder resulting from abnormal expansion of polyglutamine (polyQ) in its disease protein, ataxin-7 (ATXN7). ATXN7 is part of Spt-Ada-Gcn5 acetyltransferase (SAGA), an evolutionarily conserved transcriptional coactivation complex with critical roles in chromatin remodeling, cell signaling, neurodifferentiation, mitochondrial health and autophagy. SCA7 is dominantly inherited and characterized by genetic anticipation and high repeat-length instability. Patients with SCA7 experience progressive ataxia, atrophy, spasticity, and blindness. There is currently no cure for SCA7, and therapies are aimed at alleviating symptoms to increase quality of life. Here, we report novel Drosophila lines of SCA7 with polyQ repeats in wild-type and human disease patient range. We find that ATXN7 expression has age- and polyQ repeat length-dependent reduction in survival and retinal instability, concomitant with increased ATXN7 protein aggregation. These new lines will provide important insight on disease progression that can be used in the future to identify therapeutic targets for SCA7 patients.

3.
bioRxiv ; 2023 Nov 11.
Article in English | MEDLINE | ID: mdl-37986914

ABSTRACT

Spinocerebellar ataxia type 7 (SCA7) is a progressive neurodegenerative disorder resulting from abnormal expansion of polyglutamine (polyQ) in its disease protein, ataxin-7 (ATXN7). ATXN7 is part of Spt-Ada-Gcn5 acetyltransferase (SAGA), an evolutionarily conserved transcriptional coactivation complex with critical roles in chromatin remodeling, cell signaling, neurodifferentiation, mitochondrial health and autophagy. SCA7 is dominantly inherited and characterized by genetic anticipation and high repeat-length instability. Patients with SCA7 experience progressive ataxia, atrophy, spasticity, and blindness. There is currently no cure for SCA7, and therapies are aimed at alleviating symptoms to increase quality of life. Here, we report novel Drosophila lines of SCA7 with polyQ repeats in wild-type and human disease patient range. We find that ATXN7 expression has age- and polyQ repeat length-dependent reduction in survival and retinal instability, concomitant with increased ATXN7 protein aggregation. These new lines will provide important insight on disease progression that can be used in the future to identify therapeutic targets for SCA7 patients.

4.
J Neurol Sci ; 454: 120828, 2023 11 15.
Article in English | MEDLINE | ID: mdl-37865002

ABSTRACT

Ataxin-3 (Atxn3) is a deubiquitinase with a polyglutamine (polyQ) repeat tract whose abnormal expansion causes the neurodegenerative disease, Spinocerebellar Ataxia Type 3 (SCA3; also known as Machado-Joseph Disease). The ubiquitin chain cleavage properties of Atxn3 are enhanced when the enzyme is itself ubiquitinated at lysine (K) at position 117: in vitro, K117-ubiqutinated Atxn3 cleaves poly-ubiquitin markedly more rapidly compared to its unmodified counterpart. How polyQ expansion causes SCA3 remains unclear. To gather insights into the biology of disease of SCA3, here we posited the question: is K117 important for toxicity caused by pathogenic Atxn3? To answer this question, we generated transgenic Drosophila lines that express full-length, human, pathogenic Atxn3 with 80 polyQ with an intact or mutated K117. We found that mutating K117 mildly enhances the toxicity and aggregation of pathogenic Atxn3. An additional transgenic line that expresses Atxn3 without any K residues confirms increased aggregation of pathogenic Atxn3 whose ubiquitination is perturbed. These findings suggest that Atxn3 ubiquitination is a regulatory step of SCA3, in part by modulating its aggregation.


Subject(s)
Machado-Joseph Disease , Neurodegenerative Diseases , Animals , Humans , Machado-Joseph Disease/genetics , Ataxin-3/genetics , Drosophila , Lysine/genetics , Ubiquitin
5.
bioRxiv ; 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37398109

ABSTRACT

Ataxin-3 (Atxn3) is a deubiquitinase with a polyglutamine (polyQ) repeat tract whose abnormal expansion causes the neurodegenerative disease, Spinocerebellar Ataxia Type 3 (SCA3; also known as Machado-Joseph Disease). The ubiquitin chain cleavage properties of Atxn3 are enhanced when it is ubiquitinated at lysine (K) at position 117. K117-ubiqutinated Atxn3 cleaves poly-ubiquitin more rapidly in vitro compared to its unmodified counterpart and this residue is also important for Atxn3 roles in cell culture and in Drosophila melanogaster . How polyQ expansion causes SCA3 remains unclear. To gather insight into the biology of disease of SCA3, here we posited the question: is K117 important for toxicity caused by Atxn3? We generated transgenic Drosophila lines that express full-length, human, pathogenic Atxn3 with 80 polyQ with an intact or mutated K117. We found that K117 mutation mildly enhances the toxicity and aggregation of pathogenic Atxn3 in Drosophila . An additional transgenic line that expresses Atxn3 without any K residues confirms increased aggregation of pathogenic Atxn3 whose ubiquitination is perturbed. These findings suggest Atxn3 ubiquitination as a regulatory step of SCA3, in part by modulating its aggregation.

6.
Front Mol Neurosci ; 15: 974167, 2022.
Article in English | MEDLINE | ID: mdl-36187346

ABSTRACT

The presence and aggregation of misfolded proteins has deleterious effects in the nervous system. Among the various diseases caused by misfolded proteins is the family of the polyglutamine (polyQ) disorders. This family comprises nine members, all stemming from the same mutation-the abnormal elongation of a polyQ repeat in nine different proteins-which causes protein misfolding and aggregation, cellular dysfunction and disease. While it is the same type of mutation that causes them, each disease is distinct: it is influenced by regions and domains that surround the polyQ repeat; by proteins with which they interact; and by posttranslational modifications they receive. Here, we overview the role of non-polyQ regions that control the pathogenicity of the expanded polyQ repeat. We begin by introducing each polyQ disease, the genes affected, and the symptoms experienced by patients. Subsequently, we provide a survey of protein-protein interactions and posttranslational modifications that regulate polyQ toxicity. We conclude by discussing shared processes and pathways that bring some of the polyQ diseases together and may serve as common therapeutic entry points for this family of incurable disorders.

7.
Cells ; 11(7)2022 04 04.
Article in English | MEDLINE | ID: mdl-35406787

ABSTRACT

RNA toxicity contributes to diseases caused by anomalous nucleotide repeat expansions. Recent work demonstrated RNA-based toxicity from repeat-associated, non-AUG-initiated translation (RAN translation). RAN translation occurs around long nucleotide repeats that form hairpin loops, allowing for translation initiation in the absence of a start codon that results in potentially toxic, poly-amino acid repeat-containing proteins. Discovered in Spinocerebellar Ataxia Type (SCA) 8, RAN translation has been documented in several repeat-expansion diseases, including in the CAG repeat-dependent polyglutamine (polyQ) disorders. The ATXN3 gene, which causes SCA3, also known as Machado-Joseph Disease (MJD), contains a CAG repeat that is expanded in disease. ATXN3 mRNA possesses features linked to RAN translation. In this paper, we examined the potential contribution of RAN translation to SCA3/MJD in Drosophila by using isogenic lines that contain homomeric or interrupted CAG repeats. We did not observe unconventional translation in fly neurons or glia. However, our investigations indicate differential toxicity from ATXN3 protein-encoding mRNA that contains pure versus interrupted CAG repeats. Additional work suggests that this difference may be due in part to toxicity from homomeric CAG mRNA. We conclude that Drosophila is not suitable to model RAN translation for SCA3/MJD, but offers clues into the potential pathogenesis stemming from CAG repeat-containing mRNA in this disorder.


Subject(s)
Machado-Joseph Disease , Animals , Drosophila/metabolism , Machado-Joseph Disease/genetics , Machado-Joseph Disease/pathology , Nucleotides , RNA, Messenger/genetics , RNA, Messenger/metabolism , Trinucleotide Repeat Expansion/genetics
8.
Front Neurosci ; 16: 1112688, 2022.
Article in English | MEDLINE | ID: mdl-36733922

ABSTRACT

Spinocerebellar Ataxia Type 3 (SCA3) is a member of the family of polyglutamine (polyQ) diseases that are caused by anomalous CAG triplet repeat expansions in several genes. SCA3 results from abnormal polyQ expansion in the deubiquitinase (DUB), ataxin-3 (Atxn3). To understand the role of the different domains of mutant Atxn3 on its pathogenicity, with the hope that they can be explored for therapeutic interventions, we have systematically studied their individual and collective effects on its toxicity. One such domain is ubiquitin-binding site 1 (UbS1) on the catalytic domain of Atxn3; UbS1 is necessary for the enzymatic activity of Atxn3. Here, we investigated the importance of UbS1 on the toxicity of pathogenic Atxn3. We generated transgenic Drosophila melanogaster lines that express polyQ-expanded Atxn3 with and without a functional UbS1. We found that mutating UbS1 markedly exacerbates the toxicity of pathogenic Atxn3. Additional studies indicated that UbS1 regulates the toxicity of Atxn3 not by affecting its aggregation or sub-cellular localization, but by impacting its role in ubiquitin processing. Our findings provide additional insights into the role of Atxn3's domains in the pathogenicity of SCA3.

9.
Neurobiol Dis ; 160: 105516, 2021 12.
Article in English | MEDLINE | ID: mdl-34563642

ABSTRACT

Of the family of polyglutamine (polyQ) neurodegenerative diseases, Spinocerebellar Ataxia Type 3 (SCA3) is the most common. Like other polyQ diseases, SCA3 stems from abnormal expansions in the CAG triplet repeat of its disease gene resulting in elongated polyQ repeats within its protein, ataxin-3. Various ataxin-3 protein domains contribute to its toxicity, including the valosin-containing protein (VCP)-binding motif (VBM). We previously reported that VCP, a homo-hexameric protein, enhances pathogenic ataxin-3 aggregation and exacerbates its toxicity. These findings led us to explore the impact of targeting the SCA3 protein by utilizing a decoy protein comprising the N-terminus of VCP (N-VCP) that binds ataxin-3's VBM. The notion was that N-VCP would reduce binding of ataxin-3 to VCP, decreasing its aggregation and toxicity. We found that expression of N-VCP in Drosophila melanogaster models of SCA3 ameliorated various phenotypes, coincident with reduced ataxin-3 aggregation. This protective effect was specific to pathogenic ataxin-3 and depended on its VBM. Increasing the amount of N-VCP resulted in further phenotype improvement. Our work highlights the protective potential of targeting the VCP-ataxin-3 interaction in SCA3, a key finding in the search for therapeutic opportunities for this incurable disorder.


Subject(s)
Ataxin-3/metabolism , Machado-Joseph Disease/metabolism , Valosin Containing Protein/metabolism , Animals , Ataxin-3/genetics , Disease Models, Animal , Drosophila melanogaster , Machado-Joseph Disease/genetics , Phenotype , Protein Binding
10.
Elife ; 92020 09 21.
Article in English | MEDLINE | ID: mdl-32955441

ABSTRACT

Spinocerebellar ataxia type 3 (SCA3) belongs to the family of polyglutamine neurodegenerations. Each disorder stems from the abnormal lengthening of a glutamine repeat in a different protein. Although caused by a similar mutation, polyglutamine disorders are distinct, implicating non-polyglutamine regions of disease proteins as regulators of pathogenesis. SCA3 is caused by polyglutamine expansion in ataxin-3. To determine the role of ataxin-3's non-polyglutamine domains in disease, we utilized a new, allelic series of Drosophila melanogaster. We found that ataxin-3 pathogenicity is saliently controlled by polyglutamine-adjacent ubiquitin-interacting motifs (UIMs) that enhance aggregation and toxicity. UIMs function by interacting with the heat shock protein, Hsc70-4, whose reduction diminishes ataxin-3 toxicity in a UIM-dependent manner. Hsc70-4 also enhances pathogenicity of other polyglutamine proteins. Our studies provide a unique insight into the impact of ataxin-3 domains in SCA3, identify Hsc70-4 as a SCA3 enhancer, and indicate pleiotropic effects from HSP70 chaperones, which are generally thought to suppress polyglutamine degeneration.


Subject(s)
Ataxin-3 , Drosophila Proteins/metabolism , HSC70 Heat-Shock Proteins/metabolism , Peptides , Ubiquitin/metabolism , Amino Acid Motifs , Animals , Ataxin-3/chemistry , Ataxin-3/genetics , Ataxin-3/metabolism , Ataxin-3/toxicity , Drosophila , Drosophila Proteins/chemistry , HSC70 Heat-Shock Proteins/chemistry , Humans , Larva/metabolism , Machado-Joseph Disease/genetics , Peptides/chemistry , Peptides/genetics , Peptides/metabolism , Peptides/toxicity , Ubiquitin/chemistry
11.
Environ Pollut ; 266(Pt 2): 115090, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32693326

ABSTRACT

Microplastics (MPs) are a ubiquitous pollutant detected not only in marine and freshwater bodies, but also in tap and bottled water worldwide. While MPs have been extensively studied, the toxicity of their smaller counterpart, nanoplastics (NPs), is not well documented. Despite likely large-scale human and animal exposure to NPs, the associated health risks remain unclear, especially during early developmental stages. To address this, we investigated the health impacts of exposures to both 50 and 200 nm polystyrene NPs in larval zebrafish. From 6 to 120 h post-fertilization (hpf), developing zebrafish were exposed to a range of fluorescent NPs (10-10,000 parts per billion). Dose-dependent increases in accumulation were identified in exposed larval fish, potentially coinciding with an altered behavioral response as evidenced through swimming hyperactivity. Notably, exposures did not impact mortality, hatching rate, or deformities; however, transcriptomic analysis suggests neurodegeneration and motor dysfunction at both high and low concentrations. Furthermore, results of this study suggest that NPs can accumulate in the tissues of larval zebrafish, alter their transcriptome, and affect behavior and physiology, potentially decreasing organismal fitness in contaminated ecosystems. The uniquely broad scale of this study during a critical window of development provides crucial multidimensional characterization of NP impacts on human and animal health.


Subject(s)
Water Pollutants, Chemical , Zebrafish/genetics , Animals , Ecosystem , Embryo, Nonmammalian , Humans , Larva , Microplastics , Plastics , Transcriptome
12.
J Neurosci Res ; 98(10): 2096-2108, 2020 10.
Article in English | MEDLINE | ID: mdl-32643791

ABSTRACT

Ataxin-3 is a deubiquitinase and polyglutamine disease protein whose cellular properties and functions are not entirely understood. Mutations in ataxin-3 cause spinocerebellar ataxia type 3 (SCA3), a neurodegenerative disorder that is a member of the polyglutamine family of diseases. Two major isoforms arise from alternative splicing of ATXN3 and are differently toxic in vivo as a result of faster proteasomal degradation of one isoform compared to the other. The isoforms vary only at their C-termini, suggesting that the hydrophobic C-terminus of the more quickly degraded form of ataxin-3 (here referred to as isoform 2) functions as a degron-that is, a peptide sequence that expedites the degradation of its host protein. We explored this notion in this study and present evidence that: (a) the C-terminus of ataxin-3 isoform 2 signals its degradation in a proteasome-dependent manner, (b) this effect from the C-terminus of isoform 2 does not require the ubiquitination of ataxin-3, and (c) the isolated C-terminus of isoform 2 can enhance the degradation of an unrelated protein. According to our data, the C-terminus of ataxin-3 isoform 2 is a degron, increasing overall understanding of the cellular properties of the SCA3 protein.


Subject(s)
Ataxin-3/genetics , Computer Simulation , Peptides/genetics , Repressor Proteins/genetics , Amino Acid Sequence , Ataxin-3/metabolism , HEK293 Cells , Humans , Hydrophobic and Hydrophilic Interactions , Peptides/metabolism , Repressor Proteins/metabolism , Ubiquitination/physiology
13.
Neurobiol Dis ; 132: 104535, 2019 12.
Article in English | MEDLINE | ID: mdl-31310802

ABSTRACT

The most commonly inherited dominant ataxia, Spinocerebellar Ataxia Type 3 (SCA3), is caused by a CAG repeat expansion that encodes an abnormally long polyglutamine (polyQ) repeat in the disease protein ataxin-3, a deubiquitinase. Two major full-length isoforms of ataxin-3 exist, both of which contain the same N-terminal portion and polyQ repeat, but differ in their C-termini; one (denoted here as isoform 1) contains a motif that binds ataxin-3's substrate, ubiquitin, whereas the other (denoted here as isoform 2) has a hydrophobic tail. Most SCA3 studies have focused on isoform 1, the predominant version in mammalian brain, yet both isoforms are present in brain and a better understanding of their relative pathogenicity in vivo is needed. We took advantage of the fruit fly, Drosophila melanogaster to model SCA3 and to examine the toxicity of each ataxin-3 isoform. Our assays reveal isoform 1 to be markedly more toxic than isoform 2 in all fly tissues. Reduced toxicity from isoform 2 is due to much lower protein levels as a result of its expedited degradation. Additional studies indicate that isoform 1 is more aggregation-prone than isoform 2 and that the C-terminus of isoform 2 is critical for its enhanced proteasomal degradation. According to our results, although both full-length, pathogenic ataxin-3 isoforms are toxic, isoform 1 is likely the primary contributor to SCA3 due to its presence at higher levels. Isoform 2, as a result of rapid degradation that is dictated by its tail, is unlikely to be a key player in this disease. Our findings provide new insight into the biology of this ataxia and the cellular processing of the underlying disease protein.


Subject(s)
Ataxin-3/genetics , Ataxin-3/toxicity , Drosophila Proteins/genetics , Drosophila Proteins/toxicity , Machado-Joseph Disease/genetics , Repressor Proteins/genetics , Repressor Proteins/toxicity , Amino Acid Sequence , Animals , Animals, Genetically Modified , Drosophila melanogaster , HEK293 Cells , HeLa Cells , Humans , Machado-Joseph Disease/physiopathology , Protein Isoforms/genetics , Protein Isoforms/toxicity
14.
Hum Mol Genet ; 26(8): 1419-1431, 2017 04 15.
Article in English | MEDLINE | ID: mdl-28158474

ABSTRACT

Polyglutamine (polyQ) repeat expansion in the deubiquitinase ataxin-3 causes neurodegeneration in Spinocerebellar Ataxia Type 3 (SCA3), one of nine inherited, incurable diseases caused by similar mutations. Ataxin-3's degradation is inhibited by its binding to the proteasome shuttle Rad23 through ubiquitin-binding site 2 (UbS2). Disrupting this interaction decreases levels of ataxin-3. Since reducing levels of polyQ proteins can decrease their toxicity, we tested whether genetically modulating the ataxin-3-Rad23 interaction regulates its toxicity in Drosophila. We found that exogenous Rad23 increases the toxicity of pathogenic ataxin-3, coincident with increased levels of the disease protein. Conversely, reducing Rad23 levels alleviates toxicity in this SCA3 model. Unexpectedly, pathogenic ataxin-3 with a mutated Rad23-binding site at UbS2, despite being present at markedly lower levels, proved to be more pathogenic than a disease-causing counterpart with intact UbS2. Additional studies established that the increased toxicity upon mutating UbS2 stems from disrupting the autoprotective role that pathogenic ataxin-3 has against itself, which depends on the co-chaperone, DnaJ-1. Our data reveal a previously unrecognized balance between pathogenic and potentially therapeutic properties of the ataxin-3-Rad23 interaction; they highlight this interaction as critical for the toxicity of the SCA3 protein, and emphasize the importance of considering protein context when pursuing suppressive avenues.


Subject(s)
Ataxin-3/genetics , DNA Repair Enzymes/genetics , DNA-Binding Proteins/genetics , Machado-Joseph Disease/genetics , Nerve Degeneration/genetics , Repressor Proteins/genetics , Animals , Ataxin-3/metabolism , Binding Sites , DNA Repair Enzymes/metabolism , DNA-Binding Proteins/metabolism , Disease Models, Animal , Drosophila melanogaster/genetics , Humans , Machado-Joseph Disease/metabolism , Machado-Joseph Disease/pathology , Molecular Chaperones/genetics , Nerve Degeneration/pathology , Peptides/genetics , Proteasome Endopeptidase Complex/genetics , Proteasome Endopeptidase Complex/metabolism , Protein Binding , Repressor Proteins/metabolism , Ubiquitin/genetics
15.
Biol Open ; 5(12): 1770-1775, 2016 Dec 15.
Article in English | MEDLINE | ID: mdl-27979829

ABSTRACT

Spinocerebellar ataxia type 6 (SCA6) is a neurodegenerative disease that results from abnormal expansion of a polyglutamine (polyQ) repeat. SCA6 is caused by CAG triplet repeat expansion in the gene CACNA1A, resulting in a polyQ tract of 19-33 in patients. CACNA1A, a bicistronic gene, encodes the α1A calcium channel subunit and the transcription factor, α1ACT. PolyQ expansion in α1ACT causes degeneration in mice. We recently described the first Drosophila models of SCA6 that express α1ACT with a normal (11Q) or hyper-expanded (70Q) polyQ. Here, we report additional α1ACT transgenic flies, which express full-length α1ACT with a 33Q repeat. We show that α1ACT33Q is toxic in Drosophila, but less so than the 70Q version. When expressed everywhere, α1ACT33Q-expressing adults die earlier than flies expressing the normal allele. α1ACT33Q causes retinal degeneration and leads to aggregated species in an age-dependent manner, but at a slower pace than the 70Q counterpart. According to western blots, α1ACT33Q localizes less readily in the nucleus than α1ACT70Q, providing clues into the importance of polyQ tract length on α1ACT localization and its site of toxicity. We expect that these new lines will be highly valuable for future work on SCA6.

16.
J Biol Chem ; 291(17): 9161-72, 2016 Apr 22.
Article in English | MEDLINE | ID: mdl-26917723

ABSTRACT

Ubiquitination is a post-translational modification that regulates most cellular pathways and processes, including degradation of proteins by the proteasome. Substrate ubiquitination is controlled at various stages, including through its reversal by deubiquitinases (DUBs). A critical outcome of this process is the recycling of monoubiquitin. One DUB whose function has been proposed to include monoubiquitin recycling is USP5. Here, we investigated whether Drosophila USP5 is important for maintaining monoubiquitin in vivo We found that the fruit fly orthologue of USP5 has catalytic preferences similar to its human counterpart and that this DUB is necessary during fly development. Our biochemical and genetic experiments indicate that reduction of USP5 does not lead to monoubiquitin depletion in developing flies. Also, introduction of exogenous ubiquitin does not suppress developmental lethality caused by loss of endogenous USP5. Our work indicates that a primary physiological role of USP5 is not to recycle monoubiquitin for reutilization, but that it may involve disassembly of conjugated ubiquitin to maintain proteasome function.


Subject(s)
Drosophila Proteins/metabolism , Proteasome Endopeptidase Complex/metabolism , Ubiquitin-Specific Proteases/metabolism , Ubiquitin/metabolism , Ubiquitination/physiology , Animals , Drosophila Proteins/genetics , Drosophila melanogaster , Proteasome Endopeptidase Complex/genetics , Ubiquitin/genetics , Ubiquitin-Specific Proteases/genetics
17.
Hum Mol Genet ; 24(15): 4385-96, 2015 Aug 01.
Article in English | MEDLINE | ID: mdl-25954029

ABSTRACT

Spinocerebellar ataxia type 6 (SCA6) belongs to the family of CAG/polyglutamine (polyQ)-dependent neurodegenerative disorders. SCA6 is caused by abnormal expansion in a CAG trinucleotide repeat within exon 47 of CACNA1A, a bicistronic gene that encodes α1A, a P/Q-type calcium channel subunit and a C-terminal protein, termed α1ACT. Expansion of the CAG/polyQ region of CACNA1A occurs within α1ACT and leads to ataxia. There are few animal models of SCA6. Here, we describe the generation and characterization of the first Drosophila melanogaster models of SCA6, which express the entire human α1ACT protein with a normal or expanded polyQ. The polyQ-expanded version of α1ACT recapitulates the progressively degenerative nature of SCA6 when expressed in various fly tissues and the presence of densely staining aggregates. Additional studies identify the co-chaperone DnaJ-1 as a potential therapeutic target for SCA6. Expression of DnaJ-1 potently suppresses α1ACT-dependent degeneration and lethality, concomitant with decreased aggregation and reduced nuclear localization of the pathogenic protein. Mutating the nuclear importer karyopherin α3 also leads to reduced toxicity from pathogenic α1ACT. Little is known about the steps leading to degeneration in SCA6 and the means to protect neurons in this disease are lacking. Invertebrate animal models of SCA6 can expand our understanding of molecular sequelae related to degeneration in this disorder and lead to the rapid identification of cellular components that can be targeted to treat it.


Subject(s)
Calcium Channels/genetics , Drosophila Proteins/genetics , HSP40 Heat-Shock Proteins/genetics , Spinocerebellar Ataxias/genetics , alpha Karyopherins/genetics , Animals , Animals, Genetically Modified , Disease Models, Animal , Drosophila Proteins/biosynthesis , Drosophila melanogaster/genetics , Gene Expression Regulation , HSP40 Heat-Shock Proteins/biosynthesis , Humans , Nerve Degeneration/genetics , Nerve Degeneration/pathology , Neurons/pathology , Spinocerebellar Ataxias/pathology , Trinucleotide Repeat Expansion/genetics , alpha Karyopherins/biosynthesis
18.
Neurobiol Dis ; 82: 12-21, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26007638

ABSTRACT

Ataxin-3 is a deubiquitinase and polyglutamine (polyQ) disease protein with a protective role in Drosophila melanogaster models of neurodegeneration. In the fruit fly, wild-type ataxin-3 suppresses toxicity from several polyQ disease proteins, including a pathogenic version of itself that causes spinocerebellar ataxia type 3 and pathogenic huntingtin, which causes Huntington's disease. The molecular partners of ataxin-3 in this protective function are unclear. Here, we report that ataxin-3 requires its direct interaction with the ubiquitin-binding and proteasome-associated protein, Rad23 (known as hHR23A/B in mammals) in order to suppress toxicity from polyQ species in Drosophila. According to additional studies, ataxin-3 does not rely on autophagy or the proteasome to suppress polyQ-dependent toxicity in fly eyes. Instead this deubiquitinase, through its interaction with Rad23, leads to increased protein levels of the co-chaperone DnaJ-1 and depends on it to protect against degeneration. Through DnaJ-1, our data connect ataxin-3 and Rad23 to protective processes involved with protein folding rather than increased turnover of toxic polyQ species.


Subject(s)
Ataxin-3/metabolism , DNA Repair Enzymes/metabolism , DNA-Binding Proteins/metabolism , Drosophila Proteins/metabolism , HSP40 Heat-Shock Proteins/metabolism , Neurodegenerative Diseases/metabolism , Neuroprotection/physiology , Animals , Animals, Genetically Modified , Ataxin-3/genetics , Autophagy/genetics , DNA Repair Enzymes/genetics , DNA-Binding Proteins/genetics , Drosophila Proteins/genetics , Drosophila melanogaster , HSP40 Heat-Shock Proteins/genetics , Neurodegenerative Diseases/genetics , Peptides , Protein Folding
19.
Front Mol Neurosci ; 7: 72, 2014.
Article in English | MEDLINE | ID: mdl-25191222

ABSTRACT

The Ubiquitin-Proteasome Pathway (UPP), which is critical for normal function in the nervous system and is implicated in various neurological diseases, requires the small modifier protein ubiquitin to accomplish its duty of selectively degrading short-lived, abnormal or misfolded proteins. Over the past decade, a large class of proteases collectively known as deubiquitinating enzymes (DUBs) has increasingly gained attention in all manners related to ubiquitin. By cleaving ubiquitin from another protein, DUBs ensure that the UPP functions properly. DUBs accomplish this task by processing newly translated ubiquitin so that it can be used for conjugation to substrate proteins, by regulating the "where, when, and why" of UPP substrate ubiquitination and subsequent degradation, and by recycling ubiquitin for re-use by the UPP. Because of the reliance of the UPP on DUB activities, it is not surprising that these proteases play important roles in the normal activities of the nervous system and in neurodegenerative diseases. In this review, we summarize recent advances in understanding the functions of DUBs in the nervous system. We focus on their role in the UPP, and make the argument that understanding the UPP from the perspective of DUBs can yield new insight into diseases that result from anomalous intra-cellular processes or inter-cellular networks. Lastly, we discuss the relevance of DUBs as therapeutic options for disorders of the nervous system.

20.
Nat Commun ; 5: 4638, 2014 Aug 21.
Article in English | MEDLINE | ID: mdl-25144244

ABSTRACT

Polyglutamine repeat expansion in ataxin-3 causes neurodegeneration in the most common dominant ataxia, spinocerebellar ataxia type 3 (SCA3). Since reducing levels of disease proteins improves pathology in animals, we investigated how ataxin-3 is degraded. Here we show that, unlike most proteins, ataxin-3 turnover does not require its ubiquitination, but is regulated by ubiquitin-binding site 2 (UbS2) on its N terminus. Mutating UbS2 decreases ataxin-3 protein levels in cultured mammalian cells and in Drosophila melanogaster by increasing its proteasomal turnover. Ataxin-3 interacts with the proteasome-associated proteins Rad23A/B through UbS2. Knockdown of Rad23 in cultured cells and in Drosophila results in lower levels of ataxin-3 protein. Importantly, reducing Rad23 suppresses ataxin-3-dependent degeneration in flies. We present a mechanism for ubiquitination-independent degradation that is impeded by protein interactions with proteasome-associated factors. We conclude that UbS2 is a potential target through which to enhance ataxin-3 degradation for SCA3 therapy.


Subject(s)
Ataxin-3/metabolism , DNA Repair Enzymes/metabolism , DNA-Binding Proteins/metabolism , Repressor Proteins/metabolism , Ubiquitin/metabolism , Animals , Animals, Genetically Modified , Ataxin-3/genetics , Binding Sites , DNA Repair Enzymes/genetics , DNA-Binding Proteins/genetics , Drosophila melanogaster/metabolism , Gene Knockdown Techniques , HeLa Cells , Humans , Proteasome Endopeptidase Complex/genetics , Proteasome Endopeptidase Complex/metabolism , Repressor Proteins/genetics , Ubiquitination
SELECTION OF CITATIONS
SEARCH DETAIL
...