Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 624(7990): 57-63, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38057568

ABSTRACT

Despite tremendous progress in research on self-assembled nanotechnological building blocks, such as macromolecules1, nanowires2 and two-dimensional materials3, synthetic self-assembly methods that bridge the nanoscopic to macroscopic dimensions remain unscalable and inferior to biological self-assembly. By contrast, planar semiconductor technology has had an immense technological impact, owing to its inherent scalability, yet it seems unable to reach the atomic dimensions enabled by self-assembly. Here, we use surface forces, including Casimir-van der Waals interactions4, to deterministically self-assemble and self-align suspended silicon nanostructures with void features well below the length scales possible with conventional lithography and etching5, despite using only conventional lithography and etching. The method is remarkably robust and the threshold for self-assembly depends monotonically on all the governing parameters across thousands of measured devices. We illustrate the potential of these concepts by fabricating nanostructures that are impossible to make with any other known method: waveguide-coupled high-Q silicon photonic cavities6,7 that confine telecom photons to 2 nm air gaps with an aspect ratio of 100, corresponding to mode volumes more than 100 times below the diffraction limit. Scanning transmission electron microscopy measurements confirm the ability to build devices with sub-nanometre dimensions. Our work constitutes the first steps towards a new generation of fabrication technology that combines the atomic dimensions enabled by self-assembly with the scalability of planar semiconductors.

2.
Antioxidants (Basel) ; 11(8)2022 Aug 17.
Article in English | MEDLINE | ID: mdl-36009312

ABSTRACT

A number of stilbenoid and chalconoid derivatives were prepared by straightforward methods, and their ability to modulate tyrosinase activity and to scavenge free radicals were evaluated in vitro. The cell-free in vitro evaluation revealed two diarylpropanes, 24 and 25, as potent tyrosinase inhibitors, whereas diarylpropenoic acids seemed to enhance the enzymatic activity. An in silico evaluation of the binding affinity of the selected compounds with the crystal structure of tyrosinase was also conducted in order to obtain better insight into the mechanism. Representative synthetic compounds with inhibitory and activating properties were further evaluated in melanoma cell lines B16F1 and B16F10 for their ability to moderate tyrosinase activity and affect melanin production. Dihydrostilbene analogues I and II, exhibited a stronger anti-melanogenic effect than kojic acid through the inhibition of cellular tyrosinase activity and melanin formation, while diarylpropanoic acid 44 proved to be a potent melanogenic factor, inducing cellular tyrosinase activity and melanin formation. Moreover, the antioxidant evaluation disclosed two analogues (29 and 11) with significant free-radical-scavenging activity (12.4 and 20.3 µM), which were 10- and 6-fold more potent than ascorbic acid (122.1 µΜ), respectively.

3.
Phys Rev Lett ; 124(22): 223902, 2020 Jun 05.
Article in English | MEDLINE | ID: mdl-32567909

ABSTRACT

We study the electromechanical transduction in nanoelectromechanical actuators and show that the differences in scaling laws for electrical and mechanical effects lead to an overall nontrivial miniaturization behavior. In particular, the previously neglected fringing fields considerably increase electrical forces and improve the stability of nanoscale actuators. This shows that electrostatics does not pose any limitations to the miniaturization of electromechanical systems; in fact, in several respects, nanosystems outperform their microscale counterparts. As a specific example, we consider in-plane actuation of ultrathin slabs and show that devices consisting of a few layers of graphene are feasible, implying that electromechanical resonators operating beyond 40 GHz are possible with currently available technology.

SELECTION OF CITATIONS
SEARCH DETAIL
...