Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 20230, 2022 11 23.
Article in English | MEDLINE | ID: mdl-36418898

ABSTRACT

Plasma activated liquids have demonstrated antimicrobial effects and receive increasing attention due to the potential to strengthen the armoury of novel approaches against antibiotic resistant bacteria. However, the antibacterial activity and cytotoxic effects of these solutions need to be understood and balanced before exposure to humans. In this study, the antibacterial effects of plasma activated saline (PAS) were tested against Gram negative and positive bacteria, and HaCaT keratinocytes were used for cytotoxicity studies. For the first time, a co-culture model between these bacteria and eukaryotic cells under the influence of PAS has been described. Exposure of saline to plasma resulted in high concentrations of nitrate, hydrogen peroxide and a reduction of pH. PAS caused high antibacterial effects in the co-culture model, accompanied by high cytotoxic effects to the monolayer of mammalian cells. We present evidence and provide a deeper understanding for the hypothesis that upon treatment with PAS, chemical species generated in the liquid mediate high antimicrobial effects in the co-culture setup as well as mitochondrial depolarization and glutathione depletion in HaCaT cells and cell lysis due to acidic pH. In conclusion, PAS retains strong antibacterial effects in a co-culture model, which may have unintended negative biological effects on mammalian cells.


Subject(s)
Plasma , Saline Solution , Humans , Animals , Coculture Techniques , Saline Solution/pharmacology , Infection Control , Anti-Bacterial Agents/pharmacology , Mammals
2.
PLoS One ; 17(9): e0274524, 2022.
Article in English | MEDLINE | ID: mdl-36137100

ABSTRACT

Since first identified in 1879, plasma, the fourth state of matter, has been developed and utilised in many fields. Nonthermal atmospheric plasma, also known as cold plasma, can be applied to liquids, where plasma reactive species such as reactive Oxygen and Nitrogen species and their effects can be retained and mediated through plasma-activated liquids (PAL). In the medical field, PAL is considered promising for wound treatment, sterilisation and cancer therapy due to its rich and relatively long-lived reactive species components. This study sought to identify any potential antagonistic effect between antioxidative intracellularly accumulated platinum nanoparticles (PtNPs) and PAL. We found that PAL can significantly reduce the viability of glioblastoma U-251MG cells. This did not involve measurable ROS influx but instead lead to lipid damage on the plasma membrane of cells exposed to PAL. Although the intracellular antioxidative PtNPs showed no protective effect against PAL, this study contributes to further understanding of principle cell killing routes of PAL and discovery of potential PAL-related therapy and methods to inhibit side effects.


Subject(s)
Glioblastoma , Metal Nanoparticles , Plasma Gases , Antioxidants/metabolism , Antioxidants/pharmacology , Cell Death , Humans , Lipid Peroxidation , Lipids , Nitrogen , Oxygen , Plasma Gases/pharmacology , Platinum , Reactive Oxygen Species/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...