Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurophysiol ; 93(5): 2698-709, 2005 May.
Article in English | MEDLINE | ID: mdl-15615832

ABSTRACT

We have previously shown that abduction angular perturbations applied to the knee consistently elicit reflex responses in knee joint musculature. Although a stabilizing role for such reflexes is widely proposed, there are as of yet no studies quantifying the contribution of these reflex responses to joint stiffness. In this study, we estimate the mechanical contributions of muscle contractions elicited by mechanical excitation of periarticular tissue receptors to medial-lateral knee joint stiffness. We hypothesize that these reflex muscle contractions will significantly increase knee joint stiffness in the adduction/abduction direction and enhance the overall stability of the knee. To assess medial-lateral joint stiffness, we applied an abducting positional deflection to the fully extended knee using a servomotor and recorded the torque response using a six degree-of-freedom load-cell. EMG activity was also recorded in both relaxed and preactivated quadriceps and hamstrings muscles with surface electrodes. A simple, linear, second-order, delayed model was used to describe the knee joint dynamics in the medial/lateral direction. Our data indicate that excitation of reflexes from periarticular tissue afferents results in a significant increase of the joint's adduction-abduction stiffness. Similar to muscle stretch reflex action, which is modulated with background activation, these reflexes also show dependence on muscle activation. The potential significance of this reflex stiffness during functional tasks was also discussed. We conclude that reflex activation of knee muscles is sufficient to enhance joint stabilization in the adduction/abduction direction, where knee medial-lateral loading arises frequently during many activities.


Subject(s)
Joint Diseases/physiopathology , Muscle Contraction/physiology , Postural Balance/physiology , Reflex, Stretch/physiology , Weight-Bearing/physiology , Adult , Electromyography/methods , Humans , Male , Time Factors , Torque
2.
J Biomech ; 36(2): 199-209, 2003 Feb.
Article in English | MEDLINE | ID: mdl-12547357

ABSTRACT

Experimental evidence on the reflex responses of thigh muscles to valgus mechanical perturbations at the human knee are presented. Random step positional deflections, ranging from 5 degrees to 12 degrees at 60 degrees /s, were applied to the fully extended knees of seven healthy subjects. Subjects were instructed to maintain a constant background co-activation ( approximately 2-11% MVC) of the quadriceps and hamstring muscles prior to and during the mechanical stimulus. We found that the reflex response to sustained valgus joint deflection in the vasti muscles had longer onset latencies (range: 83-92ms) than did the stretch reflex in the same muscles (latencies: 29-31ms). This reflex EMG response consisted typically of a peak followed by sustained muscle activity throughout the step perturbation. The sustained EMG activity was dependent on the amplitude of the perturbing stimulus, but in a nonlinear manner. The long latency of the valgus response suggests that the reflex originates in nonmuscular sensory pathways, potentially from mechanoreceptors lying in periarticular tissues such as joint ligaments and capsule. Analysis of the spatial distribution of reflex responses showed an asymmetrical pattern with preferential activation of medial vs. lateral muscles of the knee. We assess whether these asymmetric reflex contractions could promote joint stability, either by inducing generalized joint stiffening, or by preferential activation of those muscles that are best suited to resist induced ligament strain.


Subject(s)
Knee Joint/physiology , Muscle Contraction/physiology , Muscle, Skeletal/physiology , Physical Stimulation/methods , Reflex, Stretch/physiology , Adult , Electromyography/methods , Feedback , Humans , Motion , Postural Balance/physiology , Psychomotor Performance/physiology , Rotation , Thigh/physiology , Torque , Weight-Bearing/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...