Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Respir Physiol ; 83(3): 261-76, 1991 Mar.
Article in English | MEDLINE | ID: mdl-2052756

ABSTRACT

A mathematical model of the airways is developed which focuses on the dynamic exchange characteristics of heat, water and soluble gas. A typical airway segment is divided radially into three regions: the airway lumen, a thin mucous layer of variable thickness coating the airway wall, and an underlying nonperfused tissue layer. A bronchial circulation capillary bed lies beyond the nonperfused tissue layer. The simultaneous exchange of water, heat and soluble gas is dealt with using the model of Tsu et al. (Ann. Biomed. Eng. 16:547-571, 1988). In the case of excretion of ingested ethyl alcohol from the bronchial and pulmonary circulations, the model predicts that during inspiration, because of the alcohol flux from the airway mucosa, a concentration of alcohol in equilibrium with mucus is achieved in the inspired air before the respiratory bronchioles are reached. During exhalation, much of this alcohol redeposits on the airway surface. The net flux of alcohol from the airway surface exceeds the flux of alcohol from the mouth in the exhaled gas indicating that the exhaled alcohol comes from the airways and bronchial circulation rather than from the alveoli and the pulmonary circulation. Alcohol flux moves farther into the airways with oral breathing compared to nasal breathing. Increased ventilation shifts the alcohol flux more alveolarward. Changes in inspired air temperature and humidity have almost no effect on the distribution of alcohol flux in the airways.


Subject(s)
Pulmonary Gas Exchange , Respiration/physiology , Computer Simulation , Ethanol , Humans , Hyperventilation , Mouth Breathing , Mucous Membrane/physiology , Nose , Solubility , Temperature
2.
Ann Biomed Eng ; 16(6): 547-71, 1988.
Article in English | MEDLINE | ID: mdl-3228218

ABSTRACT

In order to provide a means for analysis of heat, water, and soluble gas exchange with the airways during tidal ventilation, a one dimensional theoretical model describing heat and water exchange in the respiratory airways has been extended to include soluble gas exchange with the airway mucosa and water exchange with the mucous layer lining the airways. Not only do heat, water, and gas exchange occur simultaneously, but they also interact. Heating and cooling of the airway surface and mucous lining affects both evaporative water and soluble gas exchange. Water evaporation provides a major source of heat exchange. The model-predicted mean airway temperature profiles agree well with literature data for both oral and nasal breathing validating that part of the model. With model parameters giving the best fit to experimental data, the model shows: (a) substantial heat recovery in the upper airways, (b) minimal respiratory heat and water loss, and (c) low average mucous temperatures and maximal increases in mucous thickness. For resting breathing of room air, heat and water conservation appear to be more important than conditioning efficiency. End-tidal expired partial pressures of very soluble gases eliminated by the lungs are predicted to be lower than the alveolar partial pressures due to the absorption of the expired gases by the airway mucosa. The model may be usable for design of experiments to examine mechanisms associated with the local hydration and dehydration dynamics of the mucosal surface, control of bronchial perfusion, triggering of asthma, mucociliary clearance and deposition of inhaled pollutant gases.


Subject(s)
Body Temperature Regulation , Body Water/physiology , Models, Biological , Pulmonary Gas Exchange , Respiratory Physiological Phenomena , Energy Metabolism , Ethanol/pharmacology , Humans , Pulmonary Gas Exchange/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...