Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
2.
Nat Commun ; 14(1): 7972, 2023 Dec 02.
Article in English | MEDLINE | ID: mdl-38042877

ABSTRACT

Off-target interactions between antisense oligonucleotides (ASOs) with state-of-the-art modifications and biological components still pose clinical safety liabilities. To mitigate a broad spectrum of off-target interactions and enhance the safety profile of ASO drugs, we here devise a nanoarchitecture named BRace On a THERapeutic aSo (BROTHERS or BRO), which is composed of a standard gapmer ASO paired with a partially complementary peptide nucleic acid (PNA) strand. We show that these non-canonical ASO/PNA hybrids have reduced non-specific protein-binding capacity. The optimization of the structural and thermodynamic characteristics of this duplex system enables the operation of an in vivo toehold-mediated strand displacement (TMSD) reaction, effectively reducing hybridization with RNA off-targets. The optimized BROs dramatically mitigate hepatotoxicity while maintaining the on-target knockdown activity of their parent ASOs in vivo. This technique not only introduces a BRO class of drugs that could have a transformative impact on the extrahepatic delivery of ASOs, but can also help uncover the toxicity mechanism of ASOs.


Subject(s)
Oligonucleotides, Antisense , Peptide Nucleic Acids , Male , Humans , Oligonucleotides, Antisense/genetics , Oligonucleotides, Antisense/metabolism , RNA/metabolism , Protein Binding , Nucleic Acid Hybridization , Phosphorothioate Oligonucleotides/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...