Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Oncol ; 16(12): 2330-2354, 2022 06.
Article in English | MEDLINE | ID: mdl-35348275

ABSTRACT

Transforming growth factor ß (TGFß) induces epithelial-mesenchymal transition (EMT), which correlates with stemness and invasiveness. Mesenchymal-epithelial transition (MET) is induced by TGFß withdrawal and correlates with metastatic colonization. Whether TGFß promotes stemness and invasiveness simultaneously via EMT remains unclear. We established a breast cancer cell model expressing red fluorescent protein (RFP) under the E-cadherin promoter. In 2D cultures, TGFß induced EMT, generating RFPlow cells with a mesenchymal transcriptome, and regained RFP, with an epithelial transcriptome, after MET induced by TGFß withdrawal. RFPlow cells generated robust mammospheres, with epithelio-mesenchymal cell surface features. Mammospheres that were forced to adhere generated migratory cells, devoid of RFP, a phenotype which was inhibited by a TGFß receptor kinase inhibitor. Further stimulation of RFPlow mammospheres with TGFß suppressed the generation of motile cells, but enhanced mammosphere growth. Accordingly, mammary fat-pad-transplanted mammospheres, in the absence of exogenous TGFß treatment, established lung metastases with evident MET (RFPhigh cells). In contrast, TGFß-treated mammospheres revealed high tumour-initiating capacity, but limited metastatic potential. Thus, the biological context of partial EMT and MET allows TGFß to differentiate between pro-stemness and pro-invasive phenotypes.


Subject(s)
Epithelial-Mesenchymal Transition , Lung Neoplasms , Cell Line, Tumor , Humans , Phenotype , Receptors, Transforming Growth Factor beta , Transforming Growth Factor beta/metabolism
2.
Cell Rep ; 28(12): 3182-3198.e11, 2019 Sep 17.
Article in English | MEDLINE | ID: mdl-31533040

ABSTRACT

Molecular processes involving lncRNAs regulate cell function. By applying transcriptomics, we identify lncRNAs whose expression is regulated by transforming growth factor ß (TGF-ß). Upon silencing individual lncRNAs, we identify several that regulate TGF-ß signaling. Among these lncRNAs, TGFB2-antisense RNA1 (TGFB2-AS1) is induced by TGF-ß through Smad and protein kinase pathways and resides in the nucleus. Depleting TGFB2-AS1 enhances TGF-ß/Smad-mediated transcription and expression of hallmark TGF-ß-target genes. Increased dose of TGFB2-AS1 reduces expression of these genes, attenuates TGF-ß-induced cell growth arrest, and alters BMP and Wnt pathway gene profiles. Mechanistically, TGFB2-AS1, mainly via its 3' terminal region, binds to the EED adaptor of the Polycomb repressor complex 2 (PRC2), promoting repressive histone H3K27me3 modifications at TGF-ß-target gene promoters. Silencing EED or inhibiting PRC2 methylation activity partially rescues TGFB2-AS1-mediated gene repression. Thus, the TGF-ß-induced TGFB2-AS1 lncRNA exerts inhibitory functions on TGF-ß/BMP signaling output, supporting auto-regulatory negative feedback that balances TGF-ß/BMP-mediated responses.


Subject(s)
Cell Cycle Checkpoints , RNA, Antisense/metabolism , RNA, Long Noncoding/metabolism , Signal Transduction , Transforming Growth Factor beta/metabolism , A549 Cells , Humans , RNA, Antisense/genetics , RNA, Long Noncoding/genetics , Transforming Growth Factor beta/genetics
3.
Oncogenesis ; 8(6): 36, 2019 May 16.
Article in English | MEDLINE | ID: mdl-31097694

ABSTRACT

Transforming growth factor ß (TGFß) is deposited in the extracellular space of diverse tissues. Resident fibroblasts respond to TGFß and undergo myofibroblastic differentiation during tissue wound healing and cancer progression. Cancer-associated fibroblasts (CAFs) communicate with tumor cells during cancer progression, under the guidance of TGFß signaling. We report that agonist-activated liver X receptors (LXR) limit the expression of key components of myofibroblast differentiation, including the α-smooth muscle actin (αSMA) gene in liver cancer cells. CAFs derived from hepatocellular carcinoma (HCC) express high αSMA and low LXRα levels, whereas hepatocarcinoma cells exhibit an inverse expression pattern. All hepatoma cells analyzed responded to the LXRα agonist T0901317 by inducing fatty acid synthase (FASN) expression. On the other hand, T0901317 antagonized TGFß-induced fibroblastic marker responses, such as fibronectin and calponin, in a subset of hepatoma cells and all CAFs analyzed. Mechanistically, LXRα antagonized TGFß signaling at the transcriptional level. Smad3 and LXRα were recruited to adjacent DNA motifs of the ACTA2 promoter. Upon cloning the human ACTA2 promoter, we confirmed its transcriptional induction by TGFß stimulation, and LXRα overexpression repressed the promoter activity. Hepatosphere formation by HCC cells was enhanced upon co-culturing with CAFs. T0901317 suppressed the positive effects exerted on hepatosphere growth by CAFs. Taken together, the data suggest that LXRα agonists limit TGFß-dependent CAF differentiation, potentially limiting primary HCC growth.

4.
Int J Mol Sci ; 19(11)2018 Nov 20.
Article in English | MEDLINE | ID: mdl-30463358

ABSTRACT

Metastasis of tumor cells from primary sites of malignancy to neighboring stromal tissue or distant localities entails in several instances, but not in every case, the epithelial-mesenchymal transition (EMT). EMT weakens the strong adhesion forces between differentiated epithelial cells so that carcinoma cells can achieve solitary or collective motility, which makes the EMT an intuitive mechanism for the initiation of tumor metastasis. EMT initiates after primary oncogenic events lead to secondary secretion of cytokines. The interaction between tumor-secreted cytokines and oncogenic stimuli facilitates EMT progression. A classic case of this mechanism is the cooperation between oncogenic Ras and the transforming growth factor ß (TGFß). The power of TGFß to mediate EMT during metastasis depends on versatile signaling crosstalk and on the regulation of successive waves of expression of many other cytokines and the progressive remodeling of the extracellular matrix that facilitates motility through basement membranes. Since metastasis involves many organs in the body, whereas EMT affects carcinoma cell differentiation locally, it has frequently been debated whether EMT truly contributes to metastasis. Despite controversies, studies of circulating tumor cells, studies of acquired chemoresistance by metastatic cells, and several (but not all) metastatic animal models, support a link between EMT and metastasis, with TGFß, often being a common denominator in this link. This article aims at discussing mechanistic cases where TGFß signaling and EMT facilitate tumor cell dissemination.


Subject(s)
Epithelial-Mesenchymal Transition , Neoplasm Metastasis/pathology , Transforming Growth Factor beta/metabolism , Animals , Epithelial-Mesenchymal Transition/genetics , Humans , Models, Biological , Neoplasm Metastasis/genetics , Signal Transduction , Transcription Factors/metabolism
5.
J Biol Chem ; 291(24): 12706-12723, 2016 Jun 10.
Article in English | MEDLINE | ID: mdl-27129221

ABSTRACT

We previously established a mechanism of negative regulation of transforming growth factor ß signaling mediated by the nuclear ADP-ribosylating enzyme poly-(ADP-ribose) polymerase 1 (PARP1) and the deribosylating enzyme poly-(ADP-ribose) glycohydrolase (PARG), which dynamically regulate ADP-ribosylation of Smad3 and Smad4, two central signaling proteins of the pathway. Here we demonstrate that the bone morphogenetic protein (BMP) pathway can also be regulated by the opposing actions of PARP1 and PARG. PARG positively contributes to BMP signaling and forms physical complexes with Smad5 and Smad4. The positive role PARG plays during BMP signaling can be neutralized by PARP1, as demonstrated by experiments where PARG and PARP1 are simultaneously silenced. In contrast to PARG, ectopic expression of PARP1 suppresses BMP signaling, whereas silencing of endogenous PARP1 enhances signaling and BMP-induced differentiation. The two major Smad proteins of the BMP pathway, Smad1 and Smad5, interact with PARP1 and can be ADP-ribosylated in vitro, whereas PARG causes deribosylation. The overall outcome of this mode of regulation of BMP signal transduction provides a fine-tuning mechanism based on the two major enzymes that control cellular ADP-ribosylation.


Subject(s)
Adenosine Diphosphate Ribose/metabolism , Bone Morphogenetic Proteins/pharmacology , DNA-Binding Proteins/metabolism , Glycoside Hydrolases/metabolism , Signal Transduction/drug effects , Animals , Cell Line , Cells, Cultured , DNA-Binding Proteins/genetics , Gene Expression/drug effects , Glycoside Hydrolases/genetics , HEK293 Cells , Humans , Immunoblotting , Mice, Knockout , Protein Binding , RNA Interference , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction/genetics , Smad4 Protein/genetics , Smad4 Protein/metabolism , Smad5 Protein/genetics , Smad5 Protein/metabolism
6.
Cytokine Growth Factor Rev ; 27: 81-92, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26678814

ABSTRACT

The bone morphogenetic proteins (BMPs) play fundamental roles in embryonic development and control differentiation of a diverse set of cell types. It is therefore of no surprise that the BMPs also contribute to the process of tumourigenesis and regulate cancer progression through various stages. We summarise here key roles of BMP ligands, receptors, their signalling mediators, mainly focusing on proteins of the Smad family, and extracellular antagonists, that contribute to the onset of tumourigenesis and to cancer progression in diverse tissues. Overall, the BMP pathways seem to act as tumour suppressors that maintain physiological tissue homeostasis and which are perturbed in cancer either via genetic mutation or via epigenetic misregulation of key gene components. BMPs also control the self-renewal and fate choices made by stem cells in several tissues. By promoting cell differentiation, including inhibition of the process of epithelial-mesenchymal transition, BMPs contribute to the malignant progression of cancer at advanced stages. It is therefore reasonable that pharmaceutical industries continuously develop biological agents and chemical modulators of BMP signalling with the aim to improve therapeutic regimes against several types of cancer.


Subject(s)
Bone Morphogenetic Proteins/metabolism , Epithelial-Mesenchymal Transition , Neoplasm Proteins/metabolism , Neoplasms/metabolism , Animals , Bone Morphogenetic Proteins/genetics , Humans , Neoplasm Proteins/genetics , Neoplasms/genetics , Neoplasms/pathology , Smad Proteins/genetics , Smad Proteins/metabolism
7.
J Biochem ; 158(1): 61-71, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25762727

ABSTRACT

Arkadia, a positive regulator of Smad-dependent signalling via the transforming growth factor-ß (TGF-ß) family, is an E3 ubiquitin ligase that induces ubiquitylation and proteasome-dependent degradation of TGF-ß suppressors such as Smad7, c-Ski and SnoN. In this study, we examined the effects of Arkadia on bone morphogenetic protein (BMP)-induced osteoblast differentiation. Knockdown of Arkadia reduced mineralization and expression of osteoblast differentiation markers. Furthermore, we showed that Smad6, a BMP-specific inhibitory Smad, is a target of Arkadia: wild-type (WT) Arkadia, but not the C937A (CA) mutant lacking E3 ubiquitin-ligase activity, induced ubiquitylation and proteasome-dependent degradation of Smad6. Accordingly, protein levels of Smad6, Smad7 and c-Ski were elevated in MEFs from Arkadia KO mice. Finally, expression of Arkadia attenuated blockade of BMP signalling by Smad6 in a transcriptional reporter assay. These results demonstrate that Smad6 is a novel target of Arkadia, and that Arkadia positively regulates BMP signalling via degradation of Smad6, Smad7 and c-Ski/SnoN.


Subject(s)
Signal Transduction , Smad6 Protein/metabolism , Ubiquitin-Protein Ligases/metabolism , Animals , COS Cells , Cells, Cultured , Chlorocebus aethiops , Mice , Mice, Knockout , Ubiquitin-Protein Ligases/deficiency , Ubiquitination
SELECTION OF CITATIONS
SEARCH DETAIL
...