Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Mater ; 25(23): 3197-201, 2013 Jun 18.
Article in English | MEDLINE | ID: mdl-23553677

ABSTRACT

The first localized surface plasmon resonance (LSPR)-based multicolor electrochromic device with five reversible optical states is demonstrated. In this device, the size of deposited silver nanoparticles is electrochemically controlled by using a voltage-step method in which two different voltages are applied successively. The electrochemically size-controlled silver nanoparticles enable a reversible multiple-color change by a shift of the LSPR band.


Subject(s)
Metal Nanoparticles/chemistry , Silver/chemistry , Electrochemical Techniques , Electrodes , Surface Plasmon Resonance , Tin Compounds/chemistry
3.
Eur J Pharmacol ; 669(1-3): 84-93, 2011 Nov 01.
Article in English | MEDLINE | ID: mdl-21816148

ABSTRACT

The pharmacological profile of a novel angiotensin II type 1 receptor blocker, azilsartan medoxomil, was compared with that of the potent angiotensin II receptor blocker olmesartan medoxomil. Azilsartan, the active metabolite of azilsartan medoxomil, inhibited the binding of [(125)I]-Sar(1)-I1e(8)-angiotensin II to angiotensin II type 1 receptors. Azilsartan medoxomil inhibited angiotensin II-induced pressor responses in rats, and its inhibitory effects lasted 24h after oral administration. The inhibitory effects of olmesartan medoxomil disappeared within 24h. ID(50) values were 0.12 and 0.55 mg/kg for azilsartan medoxomil and olmesartan medoxomil, respectively. In conscious spontaneously hypertensive rats (SHRs), oral administration of 0.1-1mg/kg azilsartan medoxomil significantly reduced blood pressure at all doses even 24h after dosing. Oral administration of 0.1-3mg/kg olmesartan medoxomil also reduced blood pressure; however, only the two highest doses significantly reduced blood pressure 24h after dosing. ED(25) values were 0.41 and 1.3mg/kg for azilsartan medoxomil and olmesartan medoxomil, respectively. In renal hypertensive dogs, oral administration of 0.1-1mg/kg azilsartan medoxomil reduced blood pressure more potently and persistently than that of 0.3-3mg/kg olmesartan medoxomil. In a 2-week study in SHRs, azilsartan medoxomil showed more stable antihypertensive effects than olmesartan medoxomil and improved the glucose infusion rate, an indicator of insulin sensitivity, more potently (≥ 10 times) than olmesartan medoxomil. Azilsartan medoxomil also exerted more potent antiproteinuric effects than olmesartan medoxomil in Wistar fatty rats. These results suggest that azilsartan medoxomil is a potent angiotensin II receptor blocker that has an attractive pharmacological profile as an antihypertensive agent.


Subject(s)
Angiotensin II Type 1 Receptor Blockers/pharmacology , Antihypertensive Agents/pharmacology , Benzimidazoles/pharmacology , Hypertension, Renal/drug therapy , Hypertension/drug therapy , Imidazoles/pharmacology , Oxadiazoles/pharmacology , Protective Agents/pharmacology , Proteinuria/drug therapy , Tetrazoles/pharmacology , Angiotensin II/pharmacology , Animals , Blood Glucose/analysis , Blood Pressure/drug effects , CHO Cells , Cricetinae , Cricetulus , Dogs , Hypertension/blood , Hypertension/physiopathology , Hypertension, Renal/physiopathology , Insulin/blood , Insulin/physiology , Male , Olmesartan Medoxomil , Proteinuria/urine , Rats , Rats, Inbred SHR , Rats, Sprague-Dawley
4.
Br J Pharmacol ; 135(8): 1995-2003, 2002 Apr.
Article in English | MEDLINE | ID: mdl-11959803

ABSTRACT

1. We investigated the inhibitory effects of a non-acylguanidine Na(+)-H(+) exchange (NHE) inhibitor, T-162559 ((5E,7S)-[7-(5-fluoro-2-methylphenyl)-4-methyl-7,8-dihydro-5(6H)-quinolinylideneamino] guanidine dimethanesulphonate), on NHE-1, and its cardioprotective effect against ischaemia and reperfusion injury in rats and rabbits. 2. T-162559 inhibited human platelet NHE-1 in a concentration-dependent manner, with an IC(50) value of 13+/-3 nmol l(-1), making it 16 and three times more potent than cariporide IC(50): 209+/-75 nmol l(-1), P<0.01) and eniporide (IC(50): 40+/-11 nmol l(-1), P=0.066), respectively. T-162559 also inhibited rat NHE-1 with an IC(50) value of 14+/-2 nmol l(-1), which was five and three times lower than that of cariporide (IC(50): 75+/-7 nmol l(-1), P<0.01) and eniporide (IC(50): 44+/-2 nmol l(-1), P<0.01), respectively. 3. T-162559 inhibited, in a concentration-dependent manner, the reduction in cardiac contractility, progression of cardiac contracture, and increase in lactate dehydrogenase release after global ischaemia and reperfusion in perfused rat hearts. The inhibitory effects of T-162559 were observed at a lower concentration range (10 - 100 nmol l(-1)) than with cariporide and eniporide. T-162559 did not alter basal cardiac contractility or coronary flow after reperfusion, suggesting that it exerts direct cardioprotective effects on the heart. 4. Intravenous administration of T-162559 (0.03 and 0.1 mg kg(-1)) significantly inhibited the progression of myocardial infarction induced by left coronary artery occlusion and reperfusion in rabbits; the infarct size normalized by area at risk was 74+/-6% in the vehicle group, and 47+/-5% and 51+/-7% in the T-162559-0.03 mg kg(-1) and T-162559-0.1 mg kg(-1) groups (both P<0.05), respectively. 5. These results indicate that the new structural NHE-1 inhibitor T-162559 is more potent than cariporide and eniporide and possesses a cardioprotective effect against ischaemia and reperfusion injury in rat and rabbit models.


Subject(s)
Guanidines/administration & dosage , Guanidines/pharmacology , Quinolines/administration & dosage , Quinolines/pharmacology , Sodium-Hydrogen Exchangers/antagonists & inhibitors , Animals , Blood Platelets/drug effects , Blood Platelets/metabolism , Cardiotonic Agents/administration & dosage , Cardiotonic Agents/pharmacology , Dose-Response Relationship, Drug , Guanidines/chemistry , Humans , In Vitro Techniques , Injections, Intravenous , Male , Myocardial Infarction/pathology , Myocardial Infarction/prevention & control , Myocardial Ischemia/drug therapy , Myocardial Reperfusion Injury/drug therapy , Quinolines/chemistry , Rabbits , Rats , Rats, Wistar , Sulfones/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...