Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Clin Exp Nephrol ; 28(7): 617-628, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38436899

ABSTRACT

BACKGROUND: Extracellular vesicles (EVs) have received considerable attention as ideal biomarkers for kidney diseases. Most reports have focused on urinary EVs, that are mainly derived from the cells in the urinary tract. However, the detection and the application of kidney-derived EVs in plasma remains uncertain. METHODS: We examined the kidney-derived small EVs (sEVs) in plasma that were supposedly released from renal mesangial and glomerular endothelial cells, using clinical samples from healthy controls and patients with kidney transplants. Plasma from healthy controls underwent ultracentrifugation, followed by on-bead flow cytometry, targeting α8 integrin, an antigen-specific to mesangial cells. To confirm the presence of kidney-derived sEVs in peripheral blood, plasma from ABO-incompatible kidney transplant recipients was ultracentrifuged, followed by western blotting for donor blood type antigens. RESULTS: Immunohistochemistry and immunoelectron microscopy confirmed α8 integrin expression in kidney mesangial cells and their sEVs. The CD9-α8 integrin double-positive sEVs were successfully detected using on-bead flow cytometry. Western blot analysis further revealed transplanted kidney-derived sEVs containing blood type B antigens in non-blood type B recipients, who had received kidneys from blood type B donors. Notably, a patient experiencing graft kidney loss exhibited diminished signals of sEVs containing donor blood type antigens. CONCLUSION: Our findings demonstrate the potential usefulness of kidney-derived sEVs in plasma in future research for kidney diseases.


Subject(s)
Extracellular Vesicles , Kidney Transplantation , Humans , Extracellular Vesicles/metabolism , Male , Female , Middle Aged , Adult , Case-Control Studies , Mesangial Cells/metabolism , Biomarkers/blood , ABO Blood-Group System , Tetraspanin 29/metabolism , Flow Cytometry , Kidney , Endothelial Cells/metabolism , Blood Group Incompatibility
2.
Int J Mol Sci ; 24(21)2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37958555

ABSTRACT

MYCN amplification occurs in approximately 20-30% of neuroblastoma patients and correlates with poor prognosis. The TH-MYCN transgenic mouse model mimics the development of human high-risk neuroblastoma and provides strong evidence for the oncogenic function of MYCN. In this study, we identified mitotic dysregulation as a hallmark of tumor initiation in the pre-cancerous ganglia from TH-MYCN mice that persists through tumor progression. Single-cell quantitative-PCR of coeliac ganglia from 10-day-old TH-MYCN mice revealed overexpression of mitotic genes in a subpopulation of premalignant neuroblasts at a level similar to single cells derived from established tumors. Prophylactic treatment using antimitotic agents barasertib and vincristine significantly delayed the onset of tumor formation, reduced pre-malignant neuroblast hyperplasia, and prolonged survival in TH-MYCN mice. Analysis of human neuroblastoma tumor cohorts showed a strong correlation between dysregulated mitosis and features of MYCN amplification, such as MYC(N) transcriptional activity, poor overall survival, and other clinical predictors of aggressive disease. To explore the therapeutic potential of targeting mitotic dysregulation, we showed that genetic and chemical inhibition of mitosis led to selective cell death in neuroblastoma cell lines with MYCN over-expression. Moreover, combination therapy with antimitotic compounds and BCL2 inhibitors exploited mitotic stress induced by antimitotics and was synergistically toxic to neuroblastoma cell lines. These results collectively suggest that mitotic dysregulation is a key component of tumorigenesis in early neuroblasts, which can be inhibited by the combination of antimitotic compounds and pro-apoptotic compounds in MYCN-driven neuroblastoma.


Subject(s)
Antimitotic Agents , Neuroblastoma , Humans , Mice , Animals , N-Myc Proto-Oncogene Protein/genetics , N-Myc Proto-Oncogene Protein/metabolism , Cell Line, Tumor , Mice, Transgenic , Neuroblastoma/drug therapy , Neuroblastoma/genetics , Neuroblastoma/pathology , Cell Transformation, Neoplastic/genetics , Gene Expression Regulation, Neoplastic
3.
BMC Biol ; 20(1): 248, 2022 11 11.
Article in English | MEDLINE | ID: mdl-36357926

ABSTRACT

BACKGROUND: Combinatorial gene regulation by multiple microRNAs (miRNAs) is widespread and closely spaced target sites often act cooperatively to achieve stronger repression ("neighborhood" miRNA cotargeting). While miRNA cotarget sites are suggested to be more conserved and implicated in developmental control, the pathological significance of miRNA cotargeting remains elusive. RESULTS: Here, we report the pathogenic impacts of combinatorial miRNA regulation on inflammation in systemic lupus erythematosus (SLE). In the SLE mouse model, we identified the downregulation of two miRNAs, miR-128 and miR-148a, by TLR7 stimulation in plasmacytoid dendritic cells. Functional analyses using human cell lines demonstrated that miR-128 and miR-148a additively target KLF4 via extensively overlapping target sites ("seed overlap" miRNA cotargeting) and suppress the inflammatory responses. At the transcriptome level, "seed overlap" miRNA cotargeting increases susceptibility to downregulation by two miRNAs, consistent with additive but not cooperative recruitment of two miRNAs. Systematic characterization further revealed that extensive "seed overlap" is a prevalent feature among broadly conserved miRNAs. Highly conserved target sites of broadly conserved miRNAs are largely divided into two classes-those conserved among eutherian mammals and from human to Coelacanth, and the latter, including KLF4-cotargeting sites, has a stronger association with both "seed overlap" and "neighborhood" miRNA cotargeting. Furthermore, a deeply conserved miRNA target class has a higher probability of haplo-insufficient genes. CONCLUSIONS: Our study collectively suggests the complexity of distinct modes of miRNA cotargeting and the importance of their perturbations in human diseases.


Subject(s)
Lupus Erythematosus, Systemic , MicroRNAs , Humans , Animals , Mice , MicroRNAs/genetics , MicroRNAs/metabolism , Gene Expression Regulation , Lupus Erythematosus, Systemic/genetics , Lupus Erythematosus, Systemic/metabolism , Down-Regulation , Transcriptome , Mammals/genetics
4.
JCI Insight ; 6(20)2021 10 22.
Article in English | MEDLINE | ID: mdl-34676828

ABSTRACT

Monocarboxylates, such as lactate and pyruvate, are precursors for biosynthetic pathways, including those for glucose, lipids, and amino acids via the tricarboxylic acid (TCA) cycle and adjacent metabolic networks. The transportation of monocarboxylates across the cellular membrane is performed primarily by monocarboxylate transporters (MCTs), the membrane localization and stabilization of which are facilitated by the transmembrane protein basigin (BSG). Here, we demonstrate that the MCT/BSG axis sits at a crucial intersection of cellular metabolism. Abolishment of MCT1 in the plasma membrane was achieved by Bsg depletion, which led to gluconeogenesis impairment via preventing the influx of lactate and pyruvate into the cell, consequently suppressing the TCA cycle. This net anaplerosis suppression was compensated in part by the increased utilization of glycogenic amino acids (e.g., alanine and glutamine) into the TCA cycle and by activated ketogenesis through fatty acid ß-oxidation. Complementary to these observations, hyperglycemia and hepatic steatosis induced by a high-fat diet were ameliorated in Bsg-deficient mice. Furthermore, Bsg deficiency significantly improved insulin resistance induced by a high-fat diet. Taken together, the plasma membrane-selective modulation of lactate and pyruvate transport through BSG inhibition could potentiate metabolic flexibility to treat metabolic diseases.


Subject(s)
Basigin/deficiency , Fatty Liver/genetics , Insulin Resistance/physiology , Animals , Humans , Mice
5.
Nagoya J Med Sci ; 83(3): 495-508, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34552285

ABSTRACT

Midkine (MK), a heparin-binding growth factor, is associated with the poor prognosis of the pediatric tumor, neuroblastoma. MK would be a druggable target as many studies showed inhibition of its function in various cancers suppressed tumor developments. To establish the therapy targeting MK, identification of its binding partners, and elucidation of its intracellular signaling are needed. It was reported that exogenous MK induced phosphorylation of ribosomal protein S6 (RPS6) downstream of mTOR signaling. Using RPS6 phosphorylation as a marker of MK response, we searched for MK reactive cell lines. We found that MK cell lines expressing less MK tended to respond better to MK. Next, using an MK reactive neuroblastoma cell line, MK-knocked down SH-SY5Y cells, we employed a proximity-dependent biotin identification method, which was invented to evaluate protein-protein interactions by biotinylation. We confirmed that secreted MK fused to the biotin ligase BioID2 (MK-BioID2) was able to biotinylate proteins from the cells. Biotinylated proteins were identified by liquid chromatography-mass spectrometry analyses. Twenty five proteins were found to be overlapped after three independent experiments, among which insulin-like growth binding protein 2 (IGFBP2) was further analyzed. IGFBP2 was indeed detected with immunoblotting after streptavidin pull down of MK-BioID2 labeled cell extract of MK-knocked down SH-SY5Y cells. Our study suggests that the BioID2 method is useful to identify binding partners of growth factors.


Subject(s)
Insulin-Like Growth Factor Binding Protein 2/analysis , Biotin/metabolism , Biotinylation , Carrier Proteins/metabolism , Humans , Midkine , Neuroblastoma
6.
Cancer Sci ; 112(2): 715-724, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33277754

ABSTRACT

Neuroblastoma, a type of cancer that is common in children, is composed of two genetically clonal but epigenetically distinct cell types: mesenchymal (MES) and adrenergic (ADRN) types, controlled by super-enhancer-associated lineage-specific transcription factor networks. Mesenchymal-type cells are more migratory, resistant to chemotherapy, and prevalent in relapse tumors. Importantly, both cell types spontaneously transdifferentiate into one another, and this interconversion can be induced by genetic manipulations. However, the mechanisms of their spontaneous transdifferentiation and extracellular factors inducing this phenomenon have not yet been elucidated. Using a unique approach involving gene set enrichment analysis, we selected six ADRN and 10 MES candidate factors, possibly inducing ADRN and MES phenotypes, respectively. Treatment with a combination of 10 MES factors clearly induced the MES gene expression profile in ADRN-type SH-SY5Y neuroblastoma cells. Considering the effects on gene expression profile, migration ability, and chemoresistance, a combination of tumor necrosis factor alpha (TNF-α) and epidermal growth factor (EGF) was sufficient to synergistically induce the ADRN-to-MES transdifferentiation in SH-SY5Y cells. In addition, human neuroblastoma cohort analysis revealed that the expression of TNF and EGF receptors was strongly associated with MES gene expression signatures, supporting their important roles in transdifferentiation in vivo. Collectively, we propose a mechanism of neuroblastoma transdifferentiation induced by extracellular growth factors, which can be controlled in clinical situations, providing a new therapeutic possibility.


Subject(s)
Adrenergic Neurons/pathology , Cell Transdifferentiation/physiology , Epidermal Growth Factor/metabolism , Neuroblastoma/pathology , Tumor Necrosis Factor-alpha/metabolism , Cell Line, Tumor , Humans
7.
Cancer Sci ; 111(7): 2431-2439, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32415892

ABSTRACT

MYCN gene amplification is consistently associated with poor prognosis in patients with neuroblastoma, a pediatric tumor arising from the sympathetic nervous system. Conventional anticancer drugs, such as alkylating agents and platinum compounds, have been used for the treatment of high-risk patients with MYCN-amplified neuroblastoma, whereas molecule-targeting drugs have not yet been approved. Therefore, the development of a safe and effective therapeutic approach is highly desired. Although thymidylate synthase inhibitors are widely used for colorectal and gastric cancers, their usefulness in neuroblastoma has not been well studied. Here, we investigated the efficacies of approved antifolates, methotrexate, pemetrexed, and raltitrexed (RTX), on MYCN-amplified and nonamplified neuroblastoma cell lines. Cell growth-inhibitory assay revealed that RTX showed a superior inhibitory activity against MYCN-amplified cell lines. We found no significant differences in the protein expression levels of the antifolate transporter or thymidylate synthase, a primary target of RTX, among the cell lines. Because thymidine supplementation could rescue the RTX-induced cell growth suppression, the effect of RTX was mainly due to the reduction in dTTP synthesis. Interestingly, RTX treatments induced single-stranded DNA damage response in MYCN-amplified cells to a greater extent than in the nonamplified cells. We propose that the high DNA replication stress and elevated levels of DNA damage, which are a result of deregulated expression of MYCN target genes, could be the cause of increased sensitivity to RTX.


Subject(s)
DNA Damage , Gene Amplification , N-Myc Proto-Oncogene Protein/genetics , Neuroblastoma/genetics , Quinazolines/pharmacology , Thiophenes/pharmacology , Thymidylate Synthase/antagonists & inhibitors , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation , Dose-Response Relationship, Drug , Humans , Metabolic Networks and Pathways , Neuroblastoma/metabolism
8.
EBioMedicine ; 34: 18-26, 2018 Aug.
Article in English | MEDLINE | ID: mdl-30082227

ABSTRACT

Insertional mutagenesis is an important risk with all genetically modified cell therapies, including chimeric antigen receptor (CAR)-T cell therapy used for hematological malignancies. Here we describe a new tagmentation-assisted PCR (tag-PCR) system that can determine the integration sites of transgenes without using restriction enzyme digestion (which can potentially bias the detection) and allows library preparation in fewer steps than with other methods. Using this system, we compared the integration sites of CD19-specific CAR genes in final T cell products generated by retrovirus-based and lentivirus-based gene transfer and by the piggyBac transposon system. The piggyBac system demonstrated lower preference than the retroviral system for integration near transcriptional start sites and CpG islands and higher preference than the lentiviral system for integration into genomic safe harbors. Integration into or near proto-oncogenes was similar in all three systems. Tag-PCR mapping is a useful technique for assessing the risk of insertional mutagenesis.


Subject(s)
DNA Transposable Elements/genetics , Polymerase Chain Reaction/methods , Receptors, Antigen, T-Cell/genetics , T-Lymphocytes , High-Throughput Nucleotide Sequencing , Humans , Lentivirus/genetics , Retroviridae/genetics
9.
Cell Tissue Res ; 372(2): 211-221, 2018 May.
Article in English | MEDLINE | ID: mdl-29445860

ABSTRACT

Neuroblastoma is an embryonal malignancy that affects normal development of the adrenal medulla and paravertebral sympathetic ganglia in early childhood. Extensive studies have revealed the molecular characteristics of human neuroblastomas, including abnormalities at genome, epigenome and transcriptome levels. However, neuroblastoma initiation mechanisms and even its origin are long-standing mysteries. In this review article, we summarize the current knowledge about normal development of putative neuroblastoma sources, namely sympathoadrenal lineage of neural crest cells and Schwann cell precursors that were recently identified as the source of adrenal chromaffin cells. A plausible origin of enigmatic stage 4S neuroblastoma is also discussed. With regard to the initiation mechanisms, we review genetic abnormalities in neuroblastomas and their possible association to initiation mechanisms. We also summarize evidences of neuroblastoma initiation observed in genetically engineered animal models, in which epigenetic alterations were involved, including transcriptomic upregulation by N-Myc and downregulation by polycomb repressive complex 2. Finally, several in vitro experimental methods are proposed that hopefully will accelerate our comprehension of neuroblastoma initiation. Thus, this review summarizes the state-of-the-art knowledge about the mechanisms of neuroblastoma initiation, which is critical for developing new strategies to cure children with neuroblastoma.


Subject(s)
Carcinogenesis/pathology , Neuroblastoma/pathology , Adrenal Medulla/pathology , Animals , Chromaffin Cells/pathology , Disease Models, Animal , Epigenesis, Genetic , Humans , Neuroblastoma/genetics
10.
Oncoscience ; 4(7-8): 70-72, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28966937
11.
Cancer Res ; 77(19): 5259-5271, 2017 10 01.
Article in English | MEDLINE | ID: mdl-28807939

ABSTRACT

Pediatric cancers such as neuroblastoma are thought to involve a dysregulation of embryonic development. However, it has been difficult to identify the critical events that trigger tumorigenesis and differentiate them from normal development. In this study, we report the establishment of a spheroid culture method that enriches early-stage tumor cells from TH-MYCN mice, a preclinical model of neuroblastoma. Using this method, we found that tumorigenic cells were evident as early as day E13.5 during embryo development, when the MYC and PRC2 transcriptomes were significantly altered. Ezh2, an essential component of PRC2, was expressed in embryonic and postnatal tumor lesions and physically associated with N-MYC and we observed that H3K27me3 was increased at PRC2 target genes. PRC2 inhibition suppressed in vitro sphere formation, derepressed its target genes, and suppressed in situ tumor growth. In clinical specimens, expression of MYC and PRC2 target genes correlated strongly and predicted survival outcomes. Together, our findings highlighted PRC2-mediated transcriptional control during embryogenesis as a critical step in the development and clinical outcome of neuroblastoma. Cancer Res; 77(19); 5259-71. ©2017 AACR.


Subject(s)
Carcinogenesis/pathology , Embryo, Mammalian/pathology , Gene Expression Regulation, Neoplastic , N-Myc Proto-Oncogene Protein/genetics , Neuroblastoma/pathology , Polycomb Repressive Complex 2/metabolism , Transcriptome , Animals , Biomarkers, Tumor/genetics , Carcinogenesis/metabolism , Embryo, Mammalian/metabolism , Female , Humans , Male , Mice , Neoplasm Staging , Neuroblastoma/genetics , Neuroblastoma/metabolism , Polycomb Repressive Complex 2/genetics , Prognosis , Survival Rate , Transcription, Genetic
12.
Oncotarget ; 8(28): 45032-45033, 2017 Jul 11.
Article in English | MEDLINE | ID: mdl-28636551
13.
Oncotarget ; 8(63): 106296-106310, 2017 Dec 05.
Article in English | MEDLINE | ID: mdl-29290949

ABSTRACT

Neurocan (NCAN), a secreted chondroitin sulfate proteoglycan, is one of the major inhibitory molecules for axon regeneration in nervous injury. However, its role in cancer is not clear. Here we observed that high NCAN expression was closely associated with the unfavorable outcome of neuroblastoma (NB). NCAN was also highly and ubiquitously expressed in the early lesions and terminal tumor of TH-MYCN mice, a NB model. Interestingly, exogenous NCAN (i.e., overexpression, recombinant protein and conditioned medium) transformed adherent NB cells into spheres whose malignancies in vitro (anchorage-independent growth and chemoresistance) and in vivo (xenograft tumor growth) were potentiated. Both chondroitin sulfate sugar chains and NCAN's core protein were essential for the sphere formation. The CSG3 domain was essential in the moiety of NCAN. Our comprehensive microarray analysis and RT-qPCR of mRNA expression suggested that NCAN treatment promoted cell division, and urged cells to undifferentiated state. The knockdown of NCAN in tumor sphere cells cultured from TH-MYCN mice resulted in growth suppression in vitro and in vivo. Our findings suggest that NCAN, which stimulates NB cells to promote malignant phenotypes, is an extracellular molecule providing a growth advantage to cancer cells.

14.
Cancer Sci ; 106(4): 390-6, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25652313

ABSTRACT

Neuroblastoma is derived from the sympathetic neuronal lineage of neural crest cells, and is the most frequently observed of the extracranial pediatric solid tumors. The neuronal differentiation factor, NeuroD1, has previously been shown to promote cell motility in neuroblastoma by suppressing the expression of Slit2. Here we report that NeuroD1 is also involved in the proliferation of neuroblastoma cells, including human cell lines and primary tumorspheres cultured from the tumor tissues of model mice. Interestingly, the growth inhibition of neuroblastoma cells induced by knockdown of NeuroD1 was accompanied by a reduction of ALK expression. ALK is known to be one of the important predisposition genes for neuroblastoma. The phenotype resulting from knockdown of NeuroD1 was suppressed by forced expression of ALK and, therefore, NeuroD1 appears to act mainly through ALK to promote the proliferation of neuroblastoma cells. Furthermore, we showed that NeuroD1 directly bound to the promoter region of ALK gene. In addition, the particular E-box in the promoter was responsible for NeuroD1-mediated ALK expression. These results indicate that ALK should be a direct target gene of NeuroD1. Finally, the expressions of NeuroD1 and ALK in the early tumor lesions of neuroblastoma model mice coincided in vivo. We conclude that the novel mechanism would regulate the expression of ALK in neuroblastoma and that NeuroD1 should be significantly involved in neuroblastoma tumorigenesis.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/physiology , Neuroblastoma/pathology , Receptor Protein-Tyrosine Kinases/metabolism , Anaplastic Lymphoma Kinase , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Cell Proliferation/genetics , Cell Transformation, Neoplastic/genetics , DNA-Binding Proteins/genetics , Humans , Intercellular Signaling Peptides and Proteins/biosynthesis , Intercellular Signaling Peptides and Proteins/genetics , Mice , N-Myc Proto-Oncogene Protein , Nerve Tissue Proteins/biosynthesis , Nerve Tissue Proteins/genetics , Neuroblastoma/genetics , Promoter Regions, Genetic/genetics , Proto-Oncogene Proteins/genetics , RNA Interference , RNA, Small Interfering , Receptor Protein-Tyrosine Kinases/biosynthesis , Spheroids, Cellular/cytology , Tumor Cells, Cultured
15.
PLoS One ; 9(1): e86813, 2014.
Article in English | MEDLINE | ID: mdl-24466252

ABSTRACT

Tumorsphere culture enriches and expands tumor cells, thus providing important resources for cancer studies. However, as compared with metastatic tissues, primary tumors in the nervous system rarely give rise to long-surviving tumorspheres, thereby seriously limiting studies on these cancers. This might be due to the limited self-renewal capability of tumor cells and/or to inappropriate culture conditions. The growth and maintenance of tumor cells may depend on microenvironments and/or cell origins (e.g., primary or metastatic; stem cell-like or progenitor-like). Here, we attempted to establish a tumorsphere culture condition for primary neuroblastoma (NB). Primary tumors in MYCN transgenic mice, a NB model, could be serially transplanted, suggesting that these tumors contain cells with a high self-renewal potential. However, primary tumors did not give rise to tumorspheres under a serum-free neurosphere culture condition. The newly established culture condition (named PrimNeuS) contained two critical ingredients: fetal bovine serum and ß-mercaptoethanol were essential for tumorsphere formation as well as indefinite passages. The spheres could be passaged more than 20 times without exhaustion under this condition, exhibited a property of differentiation and formed tumors in vivo. Unexpectedly, PrimNeuS revealed that the MYCN transgenic mice had bone marrow metastasis. Furthermore, subcutaneous tumors derived from tumorspheres of primary tumors showed bone marrow metastasis. Taken together, PrimNeuS provides resources for the study of NB and can be used as a powerful tool for the detection of minimal residual disease and for in vitro evaluation prior to personalized therapy.


Subject(s)
Cell Culture Techniques/methods , Cellular Microenvironment/physiology , Neoplasm Metastasis/physiopathology , Neuroblastoma/physiopathology , Tumor Cells, Cultured/physiology , Animals , Cattle , Mercaptoethanol , Mice , Mice, Transgenic , N-Myc Proto-Oncogene Protein , Proto-Oncogene Proteins/genetics , Serum
16.
J Biochem ; 153(6): 511-21, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23625998

ABSTRACT

The heparin-binding growth factor midkine (MK) comprises a family with pleiotrophin/heparin-binding growth-associated molecule. The biological phenomena in which MK is involved can be categorized into five areas: (i) cancer, (ii) inflammation/immunity, (iii) blood pressure, (iv) development and (v) tissue protection. The phenotypes are clear in vivo, but the mechanisms by which MK exerts these actions are not fully understood. Candidate receptors for MK include anaplastic lymphoma kinase, protein tyrosine phosphatase ζ, Notch2, LDL receptor-related protein 1, integrins and proteoglycans. Some physical associations between these candidate receptors are also known. Because of the striking in vivo phenotypes after manipulation of MK, MK could be an important molecular target for the treatment of various diseases. To this end, it will be important to pursue studies to fully understand the mechanisms of MK action.


Subject(s)
Cytokines/metabolism , Heparin/metabolism , Signal Transduction , Anaplastic Lymphoma Kinase , Animals , Binding Sites , Carrier Proteins/metabolism , Humans , Inflammation/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Midkine , Neoplasms/metabolism , Receptor Protein-Tyrosine Kinases/metabolism , Receptor-Like Protein Tyrosine Phosphatases, Class 5/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...