Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Chem Neurosci ; 4(8): 1183-93, 2013 Aug 21.
Article in English | MEDLINE | ID: mdl-23668665

ABSTRACT

Disruption of the blood-brain barrier (BBB) can occur in various pathophysiological conditions. Administration of extraneous tracers that can pass the disrupted, but not the intact, BBB and detection of the extravasation have been widely used to assess BBB disruption in animal models. Although several fluorescent tracers have been successfully used, the administration of these tracers basically requires intravascular injection, which can be laborious when using small animals such as zebrafish. To identify fluorescent tracers that could be easily administered into various animal models and visualize the BBB disruption in vivo, we prepared nine structurally related indoline derivatives (IDs) as a minimum set of diverse fluorescent compounds. We found that one ID, ZMB741, had the highest affinity for serum albumin and emitted the strongest fluorescence in the presence of serum albumin of the nine IDs tested. The affinity to serum albumin and the fluorescence intensity was superior to those of Evans blue and indocyanine green that have been conventionally used to assess the BBB disruption. We showed that ZMB741 could be administered into zebrafish by static immersion or mice by intraperitoneal injection and visualizes the active disruption of their BBB. These results suggest that ZMB741 can be a convenient and versatile tool for in vivo fluorescent imaging of BBB disruption in various animal models. The strategy used in this study can also be applied to diversity-oriented libraries to identify novel fluorescent tracers that may be superior to ZMB741.


Subject(s)
Blood-Brain Barrier/metabolism , Diagnostic Imaging/methods , Fluorescent Dyes/pharmacokinetics , Indoles/pharmacokinetics , Animals , Biological Transport , Blood-Brain Barrier/drug effects , Disease Models, Animal , Fluorescent Dyes/administration & dosage , Indoles/administration & dosage , Mice , Permeability , Serum Albumin/chemistry , Zebrafish
2.
Inorg Chem ; 46(6): 1992-2001, 2007 Mar 19.
Article in English | MEDLINE | ID: mdl-17323916

ABSTRACT

Studies on synthesis, structures, and photophysics have been carried out for a series of luminescent copper(I) halide complexes with the chelating ligand, 1,2-bis[diphenylphosphino]benzene (dppb). The complexes studied are halogen-bridged dinuclear complexes, [Cu(mu-X)dppb]2 (X = I (1), Br (2), Cl (3)), and a mononuclear complex, CuI(dppb)(PPh3) (4). These complexes in the solid state exhibit intense blue-green photoluminescence with microsecond lifetimes (emission peaks, lambdamax = 492-533 nm; quantum yields, Phi = 0.6-0.8; and lifetimes, tau = 4.0-10.4 mus) at 298 K. In 2-methyltetrahydrofuran (2mTHF) solutions at 298 K, only 1 and 4 show weaker emission (Phi = 0.009) with shorter lifetimes (tau = 0.35 and 0.23 mus) and red-shifted spectra (lambdamax = 543 and 546 nm). The emission in the solid state originates from the (M + X)LCT excited state with a distorted-tetrahedral conformation, in which emissive excited states, 1(M + X)LCT and 3(M + X)LCT, are in equilibrium with an energy difference of approximately 2 kcal/mol. On the other hand, the complexes in the 2mTHF solutions emit from the MLCT excited state with an energetically favorable flattened conformation in the temperature range of 298-130 K. The flattened geometry with equilibrated 1MLCT and 3MLCT states has a nonradiative rate at least 2 orders of magnitude larger than that of the distorted-tetrahedral geometry, leading to a much smaller emission quantum yield (Phi = 0.009) at 298 K. Since the flattening motion is markedly suppressed below 130 K, the emission observed in 2mTHF below 130 K is considered to occur principally from the (M + X)LCT state with a distorted-tetrahedral geometry. To interpret the photophysics of 1 and 4 in both the solid and solution states, we have proposed the "2-conformations with 2-spin-states model (2C x 2S model)". The electroluminescence device using (1) as a green emissive dopant showed a moderate EL efficiency; luminous efficiency = 10.4 cd/A, power efficiency = 4.2 lm/W at 93 cd/m(2), and maximum external quantum efficiency = 4.8%.


Subject(s)
Benzene Derivatives/chemistry , Chelating Agents/chemistry , Copper/chemistry , Halogens/chemistry , Organophosphonates/chemistry , Crystallography, X-Ray , Luminescence , Magnetic Resonance Spectroscopy
3.
Dalton Trans ; (9): 1583-90, 2005 May 05.
Article in English | MEDLINE | ID: mdl-15852106

ABSTRACT

This study reports substituent effects of iridium complexes with 1-phenylisoquinoline ligands. The emission spectra and phosphorescence quantum yields of the complexes differ from that of tris(1-phenylisoquinolinato-C2,N)iridium(iii)(Irpiq) depending on the substituents. The maximum emission peak, quantum yield and lifetime of those complexes ranged from 598-635 nm, 0.17-0.32 and 1.07-2.34 micros, respectively. This indicates the nature of the substituents has a significant influence on the kinetics of the excited-state decay. The substituents attached to phenyl ring have an influence on a stability of the HOMO. Furthermore, those substituents have effect on the contribution to a mixing between 3pi-pi* and (3)MLCT for the lowest excited states. Some of the complexes display the larger quantum yield than Irpiq, which has the quantum yield of 0.22. The organic light emitting diode (OLED) device based on tris [1-(4-fluoro-5-methylphenyl)isoquinolinato-C2,N]iridium(iii)(Ir4F5Mpiq) yielded high external quantum efficiency of 15.5% and a power efficiency of 12.4 lm W(-1) at a luminance of 218 cd m(-2). An emission color of the device was close to an NTSC specification with CIE chromaticity characteristics of (0.66, 0.34).

4.
Langmuir ; 21(4): 1261-8, 2005 Feb 15.
Article in English | MEDLINE | ID: mdl-15697269

ABSTRACT

This paper reports unique and unusual formations of columnar liquid crystals and organogels by self-assembling discotic molecules, which are composed of an aromatic hexaazatriphenylene (HAT) core and six flexible aromatic side chains. In HAT derivatives 3a, with 4'-(N,N-diphenylamino)biphenyl-4-yl chains, 3b, with 4'-[N-(2-naphthyl)-N-phenylamino]biphenyl-4-yl chains, and 3c, with 4'-phenoxybiphenyl-4-yl chains, the two-dimensional hexagonal packings can be created by their self-assembling in the liquid crystalline phase, which were characterized by polarizing optical microscopy, differential scanning calorimetry, and X-ray diffraction analysis. In certain solvents, HAT molecules 3a-c can form the viscoelastic fluid organogels, in which one-dimensional aggregates composed of the HAT molecules are self-assembled and entangled into three-dimensional network structures. The organogel structures were analyzed by scanning electron microscopy observation, (1)H NMR, UV-vis, and circular dichroism spectroscopy. In contrast to 3a-c, none of the liquid crystalline and organogel phases could be formed from 3d and 3e with short aromatic side chains including a phenylene spacer, and 3f (except a few specific solutions) and 3g without terminal diarylamino and phenoxy groups. In 3a-c, the aromatic side chains with terminal flexible groups make up soft regions that cooperatively stabilize the liquid crystalline and organogel supramolecular structures together with the hard regions of the hexaazatriphenylene core.

5.
Dalton Trans ; (8): 1115-6, 2004 Apr 21.
Article in English | MEDLINE | ID: mdl-15252648

ABSTRACT

The synthesis, structure, and photophysical properties of a new cyclometalated dinuclear iridium complex, (ppy)2Ir(mu-BPB)Ir(ppy)2 [ppy = 2-phenylpyridine, BPB = 1,4-bis(pyridin-2-yl)benzene], have been investigated.

6.
J Am Chem Soc ; 125(42): 12971-9, 2003 Oct 22.
Article in English | MEDLINE | ID: mdl-14558846

ABSTRACT

Phosphorescence studies of a series of facial homoleptic cyclometalated iridium(III) complexes have been carried out. The complexes studied have the general structure Ir(III)(C-N)(3), where (C-N) is a monoanionic cyclometalating ligand: 2-(5-methylthiophen-2-yl)pyridinato, 2-(thiophen-2-yl)-5-trifluoromethylpyridinato, 2,5-di(thiophen-2-yl)pyridinato, 2,5-di(5-methylthiophen-2-yl)pyridinato, 2-(benzo[b]thiophen-2-yl)pyridinato, 2-(9,9-dimethyl-9H-fluoren-2-yl)pyridinato, 1-phenylisoquinolinato, 1-(thiophen-2-yl)isoquinolinato, or 1-(9,9-dimethyl-9H-fluoren-2-yl)isoquinolinato. Luminescence properties of all the complexes at 298 K in toluene are as follows: quantum yields of phosphorescence Phi(p) = 0.08-0.29, emission peaks lambda(max) = 558-652 nm, and emission lifetimes tau = 0.74-4.7 micros. Bathochromic shifts of the Ir(thpy)(3) family [the complexes with 2-(thiophen-2-yl)pyridine derivatives] are observed by introducing appropriate substituents, e.g., methyl, trifluoromethyl, or thiophen-2-yl. However, Phi(p) of the red emissive complexes (lambda(max) > 600 nm) becomes small, caused by a significant decrease of the radiative rate constant, k(r). In contrast, the complexes with the 1-arylisoquinoline ligands are found to have marked red shifts of lambda(max) and very high Phi(p) (0.19-0.26). These complexes are found to possess dominantly (3)MLCT (metal-to-ligand charge transfer) excited states and have k(r) values approximately 1 order of magnitude larger than those of the Ir(thpy)(3) family. An organic light-emitting diode (OLED) device that uses Ir(1-phenylisoquinolinato)(3) as a phosphorescent dopant produces very high efficiency (external quantum efficiency eta(ex) = 10.3% and power efficiency 8.0 lm/W at 100 cd/m(2)) and pure-red emission with 1931 CIE (Commission Internationale de L'Eclairage) chromaticity coordinates (x = 0.68, y = 0.32).

SELECTION OF CITATIONS
SEARCH DETAIL
...