Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Front Bioinform ; 3: 1286983, 2023.
Article in English | MEDLINE | ID: mdl-38098814

ABSTRACT

Fluorescence lifetime imaging microscopy (FLIM) provides valuable quantitative insights into fluorophores' chemical microenvironment. Due to long computation times and the lack of accessible, open-source real-time analysis toolkits, traditional analysis of FLIM data, particularly with the widely used time-correlated single-photon counting (TCSPC) approach, typically occurs after acquisition. As a result, uncertainties about the quality of FLIM data persist even after collection, frequently necessitating the extension of imaging sessions. Unfortunately, prolonged sessions not only risk missing important biological events but also cause photobleaching and photodamage. We present the first open-source program designed for real-time FLIM analysis during specimen scanning to address these challenges. Our approach combines acquisition with real-time computational and visualization capabilities, allowing us to assess FLIM data quality on the fly. Our open-source real-time FLIM viewer, integrated as a Napari plugin, displays phasor analysis and rapid lifetime determination (RLD) results computed from real-time data transmitted by acquisition software such as the open-source Micro-Manager-based OpenScan package. Our method facilitates early identification of FLIM signatures and data quality assessment by providing preliminary analysis during acquisition. This not only speeds up the imaging process, but it is especially useful when imaging sensitive live biological samples.

3.
Cell Syst ; 11(3): 286-299.e4, 2020 09 23.
Article in English | MEDLINE | ID: mdl-32916096

ABSTRACT

Motile cells navigate complex environments by changing their direction of travel, generating left-right asymmetries in their mechanical subsystems to physically turn. Currently, little is known about how external directional cues are propagated along the length scale of the whole cell and integrated with its force-generating apparatus to steer migration mechanically. We examine the mechanics of spontaneous cell turning in fish epidermal keratocytes and find that the mechanical asymmetries responsible for turning behavior predominate at the rear of the cell, where there is asymmetric centripetal actin flow. Using experimental perturbations, we identify two linked feedback loops connecting myosin II contractility, adhesion strength and actin network flow in turning cells that are sufficient to explain the observed cell shapes and trajectories. Notably, asymmetries in actin polymerization at the cell leading edge play only a minor role in the mechanics of cell turning-that is, cells steer from the rear.


Subject(s)
Cell Movement/physiology , Cell Shape/physiology , Models, Biological , Humans
4.
J Biol Methods ; 1(2)2014.
Article in English | MEDLINE | ID: mdl-25606571

ABSTRACT

µManager is an open-source, cross-platform desktop application, to control a wide variety of motorized microscopes, scientific cameras, stages, illuminators, and other microscope accessories. Since its inception in 2005, µManager has grown to support a wide range of microscopy hardware and is now used by thousands of researchers around the world. The application provides a mature graphical user interface and offers open programming interfaces to facilitate plugins and scripts. Here, we present a guide to using some of the recently added advanced µManager features, including hardware synchronization, simultaneous use of multiple cameras, projection of patterned light onto a specimen, live slide mapping, imaging with multi-well plates, particle localization and tracking, and high-speed imaging.

5.
Mol Biol Cell ; 23(4): 614-29, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22219381

ABSTRACT

Networks of polymerizing actin filaments can propel intracellular pathogens and drive movement of artificial particles in reconstituted systems. While biochemical mechanisms activating actin network assembly have been well characterized, it remains unclear how particle geometry and large-scale force balance affect emergent properties of movement. We reconstituted actin-based motility using ellipsoidal beads resembling the geometry of Listeria monocytogenes. Beads coated uniformly with the L. monocytogenes ActA protein migrated equally well in either of two distinct orientations, with their long axes parallel or perpendicular to the direction of motion, while intermediate orientations were unstable. When beads were coated with a fluid lipid bilayer rendering ActA laterally mobile, beads predominantly migrated with their long axes parallel to the direction of motion, mimicking the orientation of motile L. monocytogenes. Generating an accurate biophysical model to account for our observations required the combination of elastic-propulsion and tethered-ratchet actin-polymerization theories. Our results indicate that the characteristic orientation of L. monocytogenes must be due to polarized ActA rather than intrinsic actin network forces. Furthermore, viscoelastic stresses, forces, and torques produced by individual actin filaments and lateral movement of molecular complexes must all be incorporated to correctly predict large-scale behavior in the actin-based movement of nonspherical particles.


Subject(s)
Actins/chemistry , Bacterial Proteins/chemistry , Membrane Proteins/chemistry , Models, Chemical , Biophysical Phenomena , Elasticity , Microspheres , Motion , Polymerization , Viscosity
6.
Nature ; 465(7296): 373-7, 2010 May 20.
Article in English | MEDLINE | ID: mdl-20485438

ABSTRACT

Crawling locomotion of eukaryotic cells is achieved by a process dependent on the actin cytoskeleton: protrusion of the leading edge requires assembly of a network of actin filaments, which must be disassembled at the cell rear for sustained motility. Although ADF/cofilin proteins have been shown to contribute to actin disassembly, it is not clear how activity of these locally acting proteins could be coordinated over the distance scale of the whole cell. Here we show that non-muscle myosin II has a direct role in actin network disassembly in crawling cells. In fish keratocytes undergoing motility, myosin II is concentrated in regions at the rear with high rates of network disassembly. Activation of myosin II by ATP in detergent-extracted cytoskeletons results in rear-localized disassembly of the actin network. Inhibition of myosin II activity and stabilization of actin filaments synergistically impede cell motility, suggesting the existence of two disassembly pathways, one of which requires myosin II activity. Our results establish the importance of myosin II as an enzyme for actin network disassembly; we propose that gradual formation and reorganization of an actomyosin network provides an intrinsic destruction timer, enabling long-range coordination of actin network treadmilling in motile cells.


Subject(s)
Actins/chemistry , Actins/metabolism , Epithelial Cells/cytology , Epithelial Cells/metabolism , Myosin Type II/metabolism , Adenosine Triphosphate/pharmacology , Animals , Cell Movement/drug effects , Cichlids , Cytoskeleton/chemistry , Cytoskeleton/drug effects , Cytoskeleton/metabolism , Depsipeptides/pharmacology , Detergents , Heterocyclic Compounds, 4 or More Rings/pharmacology , Myosin Type II/antagonists & inhibitors , Protein Binding/drug effects , Protein Transport
7.
Proc Natl Acad Sci U S A ; 106(23): 9232-7, 2009 Jun 09.
Article in English | MEDLINE | ID: mdl-19470452

ABSTRACT

Hydrogen bonds play major roles in biological structure and function. Nonetheless, hydrogen-bonded protons are not typically observed by X-ray crystallography, and most structural studies provide limited insight into the conformational plasticity of individual hydrogen bonds or the dynamical coupling present within hydrogen bond networks. We report the NMR detection of the hydrogen-bonded protons donated by Tyr-42 and Glu-46 to the chromophore oxygen in the active site of the bacterial photoreceptor, photoactive yellow protein (PYP). We have used the NMR resonances for these hydrogen bonds to probe their conformational properties and ability to rearrange in response to nearby electronic perturbation. The detection of geometric isotope effects transmitted between the Tyr-42 and Glu-46 hydrogen bonds provides strong evidence for robust coupling of their equilibrium conformations. Incorporation of a modified chromophore containing an electron-withdrawing cyano group to delocalize negative charge from the chromophore oxygen, analogous to the electronic rearrangement detected upon photon absorption, results in a lengthening of the Tyr-42 and Glu-46 hydrogen bonds and an attenuated hydrogen bond coupling. The results herein elucidate fundamental properties of hydrogen bonds within the complex environment of a protein interior. Furthermore, the robust conformational coupling and plasticity of hydrogen bonds observed in the PYP active site may facilitate the larger-scale dynamical coupling and signal transduction inherent to the biological function that PYP has evolved to carry out and may provide a model for other coupled dynamic systems.


Subject(s)
Bacterial Proteins/chemistry , Halorhodospira halophila/chemistry , Photoreceptors, Microbial/chemistry , Catalytic Domain , Crystallography, X-Ray , Escherichia coli/genetics , Hydrogen Bonding , Nuclear Magnetic Resonance, Biomolecular
8.
ACS Chem Biol ; 2(4): 221-4, 2007 Apr 24.
Article in English | MEDLINE | ID: mdl-17455897

ABSTRACT

Actin filament polymerization provides the driving force for several kinds of actin-based motility, propelling loads such as the plasma membrane at the leading edge of a crawling cell, an endosomal vesicle, or an intracellular bacterial pathogen. In these systems, branched filament networks continuously grow while simultaneously remaining attached to the load. Previous experiments have suggested an important role in both actin filament nucleation and filament attachment for a family of proteins called nucleation-promoting factors (NPFs) that stimulate actin branch formation and nucleation by the Arp2/3 complex. A recent report demonstrates that N-WASP, an NPF, uses distinct domains to mediate nucleation and attachment during motility. The surprising details of the biochemical mechanism necessitate reconsideration of the biophysical models proposed for actin-based motility.


Subject(s)
Actins/physiology , Cell Movement/physiology , Actin-Related Protein 2-3 Complex/physiology , Wiskott-Aldrich Syndrome Protein, Neuronal/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...