Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Radiol Phys Technol ; 5(2): 186-98, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22544809

ABSTRACT

A new treatment planning system (TPS) was designed and developed for a new treatment system, which consisted of a micro-beam-enabled linac with robotics and a real-time tracking system. We also evaluated the effectiveness of the implemented algorithms of optimization and dose calculations in the TPS for the new treatment system. In the TPS, the optimization procedure consisted of the pseudo Beam's-Eye-View method for finding the optimized beam directions and the steepest-descent method for determination of beam intensities. We used the superposition-/convolution-based (SC-based) algorithm and Monte Carlo-based (MC-based) algorithm to calculate dose distributions using CT image data sets. In the SC-based algorithm, dose density scaling was applied for the calculation of inhomogeneous corrections. The MC-based algorithm was implemented with Geant4 toolkit and a phase-based approach using a network-parallel computing. From the evaluation of the TPS, the system can optimize the direction and intensity of individual beams. The accuracy of the dose calculated by the SC-based algorithm was less than 1% on average with the calculation time of 15 s for one beam. However, the MC-based algorithm needed 72 min for one beam using the phase-based approach, even though the MC-based algorithm with the parallel computing could decrease multiple beam calculations and had 18.4 times faster calculation speed using the parallel computing. The SC-based algorithm could be practically acceptable for the dose calculation in terms of the accuracy and computation time. Additionally, we have found a dosimetric advantage of proton Bragg peak-like dose distribution in micro-beam treatment.


Subject(s)
Algorithms , Radiation Dosage , Radiotherapy Planning, Computer-Assisted/methods , Monte Carlo Method , Radiotherapy Dosage
2.
Radiat Oncol ; 6: 116, 2011 Sep 14.
Article in English | MEDLINE | ID: mdl-21914223

ABSTRACT

BACKGROUND: Chordoma, a rare cancer, is usually treated with surgery and/or radiation. However, very limited characterizations of chordoma cells are available due to a minimal availability (only two lines validated by now) and the extremely long doubling time. In order to overcome this situation, we successfully derived a cell line with a shorter doubling time from the first validated chordoma line U-CH1 and obtained invaluable cell biological data. METHOD: After isolating a subpopulation of U-CH1 cells with a short doubling time (U-CH1-N), cell growth, cell cycle distribution, DNA content, chromosome number, p53 status, and cell survival were examined after exposure to X-rays, heavy ions, camptothecin, mitomycin C, cisplatin and bleocin. These data were compared with those of HeLa (cervical cancer) and U87-MG (glioblastoma) cells. RESULTS: The cell doubling times for HeLa, U87-MG and U-CH1-N were approximately 18 h, 24 h and 3 days respectively. Heavy ion irradiation resulted in more efficient cell killing than x-rays in all three cell lines. Relative biological effectiveness (RBE) at 10% survival for U-CH1-N was about 2.45 for 70 keV/µm carbon and 3.86 for 200 keV/µm iron ions. Of the four chemicals, bleocin showed the most marked cytotoxic effect on U-CH1-N. CONCLUSION: Our data provide the first comprehensive cellular characterization using cells of chordoma origin and furnish the biological basis for successful clinical results of chordoma treatment by heavy ions.


Subject(s)
Antineoplastic Agents/pharmacology , Bone Neoplasms/drug therapy , Bone Neoplasms/radiotherapy , Chordoma/drug therapy , Chordoma/radiotherapy , Cell Cycle , Cell Line, Tumor , Chromosomes/ultrastructure , Flow Cytometry , HeLa Cells , Humans , In Vitro Techniques , Karyotyping , Relative Biological Effectiveness , Reproducibility of Results , Time Factors , Tumor Suppressor Protein p53/biosynthesis , X-Rays
3.
Med Phys ; 38(7): 3971-80, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21858994

ABSTRACT

PURPOSE: In respiratory-gated radiation therapy, a baseline shift decreases the accuracy of target coverage and organs at risk (OAR) sparing. The effectiveness of audio-feedback and audio-visual feedback in correcting the baseline shift in the breathing pattern of the patient has been demonstrated previously. However, the baseline shift derived from the intrafraction motion of the patient's body cannot be corrected by these methods. In the present study, the authors designed and developed a simple and flexible system. METHODS: The system consisted of a web camera and a computer running our in-house software. The in-house software was adapted to template matching and also to no preimage processing. The system was capable of monitoring the baseline shift in the intrafraction motion of the patient's body. Another marker box was used to monitor the baseline shift due to the flexible setups required of a marker box for gated signals. The system accuracy was evaluated by employing a respiratory motion phantom and was found to be within AAPM Task Group 142 tolerance (positional accuracy <2 mm and temporal accuracy <100 ms) for respiratory-gated radiation therapy. Additionally, the effectiveness of this flexible and independent system in gated treatment was investigated in healthy volunteers, in terms of the results from the differences in the baseline shift detectable between the marker positions, which the authors evaluated statistically. RESULTS: The movement of the marker on the sternum [1.599 +/- 0.622 mm (1 SD)] was substantially decreased as compared with the abdomen [6.547 +/- 0.962 mm (1 SD)]. Additionally, in all of the volunteers, the baseline shifts for the sternum [-0.136 +/- 0.868 (2 SD)] were in better agreement with the nominal baseline shifts than was the case for the abdomen [-0.722 +/- 1.56 mm (2 SD)]. The baseline shifts could be accurately measured and detected using the monitoring system, which could acquire the movement of the marker on the sternum. The baseline shift-monitoring system with the displacement-based methods for highly accurate respiratory-gated treatments should be used to make most of the displacement-based gating methods. CONCLUSIONS: The advent of intensity modulated radiation therapy and volumetric modulated radiation therapy facilitates margin reduction for the planning target volumes and the OARs, but highly accurate irradiation is needed to achieve target coverage and OAR sparing with a small margin. The baseline shifts can affect treatment not only with the respiratory gating system but also without the system. Our system can manage the baseline shift and also enables treatment irradiation to be undertaken with high accuracy.


Subject(s)
Image Interpretation, Computer-Assisted/instrumentation , Monitoring, Physiologic/instrumentation , Radiotherapy, Computer-Assisted/instrumentation , Radiotherapy, Conformal/instrumentation , Respiratory Mechanics , Equipment Design , Equipment Failure Analysis , Humans , Reproducibility of Results , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...