Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 138(34): 10950-62, 2016 08 31.
Article in English | MEDLINE | ID: mdl-27483029

ABSTRACT

The recently discovered role of the BCL2 (B-cell lymphoma 2 gene) promoter i-motif DNA in modulation of gene expression via interaction with the ribonucleoprotein hnRNP L-like (hnRNP LL) has prompted a more detailed study of the nature of this protein-DNA interaction. The RNA recognition motifs (RRMs) of hnRNP LL were expressed individually, and both RRM1 and RRM2 were found to bind efficiently to the BCL2 i-motif DNA, as well as being critical for transcriptional activation, whereas RRM3-4 bound only weakly to this DNA. Binding was followed by unfolding of the DNA as monitored by changes in the CD spectrum. Mutational analysis of the i-motif DNA revealed that binding involved primarily the lateral loops of the i-motif. The kinetics of binding of the DNA with RRM1 was explored by recording CD spectra at predetermined times following admixture of the protein and DNA. The change in molar ellipticity was readily apparent after 30 s and largely complete within 1 min. A more detailed view of protein-DNA interaction was obtained by introducing the fluorescence donor 6-CNTrp in RRM1 at position 137, and the acceptor 4-aminobenzo[g]quinazoline-2-one (Cf) in lieu of cytidine22 in the i-motif DNA. The course of binding of the two species was monitored by FRET, which reflected a steady increase in energy transfer over a period of several minutes. The FRET signal could be diminished by the further addition of (unlabeled) RRM2, no doubt reflecting competition for binding to the i-motif DNA. These experiments using the individual RRM domains from hnRNP LL confirm the role of this transcription factor in activation of BCL2 transcription via the i-motif in the promoter element.


Subject(s)
DNA/genetics , DNA/metabolism , Heterogeneous-Nuclear Ribonucleoproteins/chemistry , Heterogeneous-Nuclear Ribonucleoproteins/metabolism , Nucleotide Motifs , Promoter Regions, Genetic/genetics , Proto-Oncogene Proteins c-bcl-2/genetics , Base Sequence , DNA/chemistry , Models, Molecular , Protein Binding , Protein Domains
2.
Nat Chem ; 8(6): 556-62, 2016 06.
Article in English | MEDLINE | ID: mdl-27219699

ABSTRACT

The PCR amplification of oligonucleotides enables the evolution of sequences called aptamers that bind specific targets with antibody-like affinity. However, in many applications the use of these aptamers is limited by nuclease-mediated degradation. In contrast, oligonucleotides that are modified at their sugar C2' positions with methoxy or fluorine substituents are stable to nucleases, but they cannot be synthesized by natural polymerases. Here we report the development of a polymerase-evolution system and its use to evolve thermostable polymerases that efficiently interconvert C2'-OMe-modified oligonucleotides and their DNA counterparts via 'transcription' and 'reverse transcription' or, more importantly, that PCR-amplify partially C2'-OMe- or C2'-F-modified oligonucleotides. A mechanistic analysis demonstrates that the ability to amplify the modified oligonucleotides evolved by optimizing interdomain interactions that stabilize the catalytically competent closed conformation of the polymerase. The evolved polymerases should find practical applications and the developed evolution system should be a powerful tool for tailoring polymerases to have other types of novel function.


Subject(s)
DNA-Directed DNA Polymerase/chemistry , DNA-Directed DNA Polymerase/metabolism , DNA/chemistry , Aptamers, Nucleotide/chemistry , DNA Replication/physiology , Evolution, Molecular , Hot Temperature , Models, Molecular , Nucleic Acid Conformation , Oligonucleotides/chemical synthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...