Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Hypertens Res ; 26(11): 915-21, 2003 Nov.
Article in English | MEDLINE | ID: mdl-14714584

ABSTRACT

Long-term treatment with an angiotensin II type 1 receptor blocker (ARB) has been shown to decrease the plasma renin activity (PRA) of hypertensive patients, whereas PRA remains elevated during angiotensin-converting enzyme inhibitor (ACEI) treatment. In the present study, we used rat juxtaglomerular (JG) cells to elucidate the mechanism(s) involved in the differential regulation of PRA between ARB and ACEI treatment. Addition of 100 nmol/l angiotensinogen (Aogen) to JG cells (n=6 primary cultures) significantly increased the medium angiotensin (Ang) II levels from 14 +/- 2 to 440 +/- 9 pg/ml and suppressed the renin secretion rate (RSR) from 39.6 +/- 5.4% to 6.3 +/- 1.8% without affecting active renin content (ARC) or total renin content (TRC). In the Aogen-treated cells, the ACEI, delapril hydrochloride (CV3317, 10 micromol/l), significantly decreased the medium Ang II levels to 58 +/- 14 pg/ml and increased RSR to 39.8 +/- 4.1% without affecting ARC or TRC. The ARB, an active metabolite of candesartan cilexetil (CV11974, 10 micromol/l), however, significantly increased the medium Ang II levels and RSR to 486 +/- 15 pg/ml and 40.9 +/- 9.8%, respectively, and decreased ARC from 63.2 +/- 6.8 to 21.6 +/- 3.6 ng of Ang l x h(-1) x million cells(-1) without affecting TRC. The decreases in ARC of the Aogen+CV11974-treated cells (n=6 primary cultures) were inhibited by an Ang II type 2 receptor blocker, PD123319 (10 micromol/l). JG cells (n=6 primary cultures) were also treated with an Ang II type 2 receptor agonist, CGP42212A (0.1 micromol/l). CGP42212A significantly increased RSR from 38.2 +/- 1.6% to 49.7 +/- 4.7% and decreased ARC from 60.8 +/- 3.0 to 25.3 +/- 2.8 ng of Ang l x h(-1) million cells(-1) without affecting TRC. Addition of CV11974 did not alter the RSR, ARC, or TRC of the CGP42212A-treated cells; however, PD123319 abolished the effects of CGP42212A. These results indicate that, distinct from ACEIs, ARBs inhibit prorenin processing of JG cells through Ang II type 2 receptors. Long-term treatment with an ARB may decrease PRA in part by diminishing the storage of active renin in JG cells.


Subject(s)
Angiotensin II Type 2 Receptor Blockers , Juxtaglomerular Apparatus/metabolism , Renin/metabolism , Angiotensin II Type 1 Receptor Blockers , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Angiotensinogen/metabolism , Animals , Antihypertensive Agents/pharmacology , Benzimidazoles/pharmacology , Biphenyl Compounds , Culture Media , Imidazoles/pharmacology , Immunohistochemistry , Juxtaglomerular Apparatus/cytology , Male , Oligopeptides/pharmacology , Pyridines/pharmacology , Rats , Rats, Sprague-Dawley , Tetrazoles/pharmacology
2.
Kidney Int ; 62(1): 41-50, 2002 Jul.
Article in English | MEDLINE | ID: mdl-12081562

ABSTRACT

BACKGROUND: In the renal proximal tubule, chronic acidosis causes increases in apical membrane NHE3 activity, which serve to increase transepithelial H+ secretion and return systemic pH to normal levels. Incubation of cultured renal epithelial cells in acid media activates c-Src. METHODS: OKP cells were incubated in control (pH 7.4) or acid (7.0) media, and NHE3 activity measured as cytoplasmic pH (pHi) recovery from an acid load using BCECF. c-Src, ERK, and JNK kinase activities were measured by immune complex kinase assays with enolase, MBP, and GST-c-Jun, respectively, as substrates in the in vitro assays. To determine the role of c-Src in acid-induced NHE3 activation, cells were transfected with vector alone or a dominant negative c-Src (c-SrcK295M). RESULTS: Expression of dominant negative c-srcK295M in OKP cells prevented acid-induced activation of NHE3. Incubation of OKP cells in acid media increased ERK activity and c-fos expression, but did not increase JNK activity. Acidosis in vivo also activated renal cortical c-Src and ERK kinases, whereas incubation of 3T3 cells in acid media activated c-Src but not ERK kinase. Expression of c-srcK295M did not affect ERK or c-fos activation by acid incubation. Inhibition of MEK with PD98059 inhibited activation of NHE3 by acid incubation. CONCLUSIONS: These studies suggest that acidosis activates c-Src and MEK/ERK/c-fos. While both pathways are necessary for activation of NHE3, they are activated independently.


Subject(s)
Acidosis/metabolism , Mitogen-Activated Protein Kinase 1/physiology , Mitogen-Activated Protein Kinases/physiology , Protein-Tyrosine Kinases/physiology , Sodium-Hydrogen Exchangers/metabolism , Ammonium Chloride/pharmacology , Animals , CSK Tyrosine-Protein Kinase , Cells, Cultured , Enzyme Activation , JNK Mitogen-Activated Protein Kinases , Male , Mitogen-Activated Protein Kinase 3 , Mitogen-Activated Protein Kinases/metabolism , Phosphorylation , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins c-fos/biosynthesis , Rats , Rats, Sprague-Dawley , Sodium-Hydrogen Exchanger 3 , src-Family Kinases
SELECTION OF CITATIONS
SEARCH DETAIL
...