Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Nitric Oxide ; 44: 8-17, 2015 Jan 30.
Article in English | MEDLINE | ID: mdl-25460325

ABSTRACT

Superoxide (O2(•-)) promotes neointimal hyperplasia following arterial injury. Conversely, nitric oxide ((•)NO) inhibits neointimal hyperplasia through various cell-specific mechanisms, including redox regulation. What remains unclear is whether (•)NO exerts cell-specific regulation of the vascular redox environment following arterial injury to inhibit neointimal hyperplasia. Therefore, the aim of the present study was to assess whether (•)NO exerts cell-specific, differential modulation of O2(•-) levels throughout the arterial wall, establish the mechanism of such modulation, and determine if it regulates (•)NO-dependent inhibition of neointimal hyperplasia. In vivo, (•)NO increased superoxide dismutase-1 (SOD-1) levels following carotid artery balloon injury in a rat model. In vitro, (•)NO increased SOD-1 levels in vascular smooth muscle cells (VSMC), but had no effect on SOD-1 in endothelial cells or adventitial fibroblasts. This SOD-1 increase was associated with an increase in sod1 gene expression, increase in SOD-1 activity, and decrease in O2(•-) levels. Lastly, to determine the role of SOD-1 in (•)NO-mediated inhibition of neointimal hyperplasia, we performed the femoral artery wire injury model in wild type and SOD-1 knockout (KO) mice, with and without (•)NO. Interestingly, (•)NO inhibited neointimal hyperplasia only in wild type mice, with no effect in SOD-1 KO mice. In conclusion, these data show the cell-specific modulation of O2(•-) by (•)NO through regulation of SOD-1 in the vasculature, highlighting its importance on the inhibition of neointimal hyperplasia. These results also shed light into the mechanism of (•)NO-dependent redox balance, and suggest a novel VSMC redox target to prevent neointimal hyperplasia.


Subject(s)
Carotid Artery Injuries/metabolism , Hyperplasia/metabolism , Neointima/metabolism , Nitric Oxide/pharmacology , Superoxide Dismutase/genetics , Animals , Cell Proliferation , Cells, Cultured , Femoral Artery/injuries , Femoral Artery/metabolism , Femoral Artery/pathology , Hyperplasia/pathology , Male , Mice , Mice, Knockout , Muscle, Smooth, Vascular/cytology , Neointima/pathology , Oxidative Stress/drug effects , Rats , Rats, Sprague-Dawley , Superoxide Dismutase/analysis , Superoxide Dismutase/metabolism , Superoxide Dismutase-1
SELECTION OF CITATIONS
SEARCH DETAIL
...