Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
1.
Nanotechnology ; 35(30)2024 May 10.
Article in English | MEDLINE | ID: mdl-38653214

ABSTRACT

Graphene oxide (GO)-based membranes hold significant promise for applications ranging from energy storage to protective coatings, to saline water and produced water treatment, owing to their chemical stability and unique barrier properties achieving a high selectivity for water permeation. However, unmodified GO membranes are not stable when submerged in liquid water, creating challenges with their commercial utilization in aqueous filtration and pervaporation applications. To mitigate this, we develop an approach to modify GO membranes through a combination of low temperature thermal reduction and metal cation crosslinking. We demonstrate that Zn2+-rGO and Fe3+-rGO membranes had the highest permeation flux of 8.3 ± 1.5 l m-2h-1and 7.0 ± 0.4 l m-2h-1, for saline water separation, respectively, when thermally reduced after metal cross-linking; These membranes maintained a high flux of 7.5 ± 0.7 l m-2h-1, and 5.5 ± 0.3 l m-2h-1for produced water separation, respectively. All the membranes had a salt rejection higher than 99%. Fe3+crosslinked membranes presented the highest organic solute rejections for produced water of 69%. Moreover, long term pervaporation testing was done for the Zn2+-rGO membrane for 12 h, and only a minor drop of 6% in permeation flux was observed, while Zn2+-GO had a drop of 24%. Both modifiers significantly enhanced the stability with Fe3+-rGO membranes displaying the highest mechanical abrasion resistance of 95% compared to non-reduced and non-crosslinked GO. Improved stability for all samples also led to higher selectivity to water over organic contaminants and only slightly reduced water flux across the membrane.

2.
Aging Cell ; 23(4): e14103, 2024 04.
Article in English | MEDLINE | ID: mdl-38361361

ABSTRACT

S-adenosylmethionine (SAM), generated from methionine and ATP by S-adenosyl methionine synthetase (SAMS), is the universal methyl group donor required for numerous cellular methylation reactions. In Caenorhabditis elegans, silencing sams-1, the major isoform of SAMS, genetically or via dietary restriction induces a robust mitochondrial unfolded protein response (UPRmt) and lifespan extension. In this study, we found that depleting SAMS-1 markedly decreases mitochondrial SAM levels. Moreover, RNAi knockdown of SLC-25A26, a carrier protein responsible for transporting SAM from the cytoplasm into the mitochondria, significantly lowers the mitochondrial SAM levels and activates UPRmt, suggesting that the UPRmt induced by sams-1 mutations might result from disrupted mitochondrial SAM homeostasis. Through a genetic screen, we then identified a putative mitochondrial tRNA methyltransferase TRMT-10C.2 as a major downstream effector of SAMS-1 to regulate UPRmt and longevity. As disruption of mitochondrial tRNA methylation likely leads to impaired mitochondrial tRNA maturation and consequently reduced mitochondrial translation, our findings suggest that depleting mitochondrial SAM level might trigger UPRmt via attenuating protein translation in the mitochondria. Together, this study has revealed a potential mechanism by which SAMS-1 regulates UPRmt and longevity.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Animals , Caenorhabditis elegans/metabolism , Longevity/genetics , S-Adenosylmethionine/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Mitochondria/metabolism , Unfolded Protein Response , RNA, Transfer/metabolism
3.
Lab Chip ; 24(3): 434-445, 2024 01 30.
Article in English | MEDLINE | ID: mdl-38086663

ABSTRACT

A bubble-based acoustofluidic filtration (BAF) microfluidic device, which employs cross-flow filtration (CFF) and acoustic streaming, separates cells with high efficiency for forensic analysis. Forensic samples are typically complex and contain a substantial number of squamous epithelial cells from the female vagina, which tend to have fouling problems during filtration due to their morphological and cell adhesion differences. To overcome this issue, the BAF device utilizes bubble oscillation by bulk acoustic wave (BAW) to generate acoustic streaming, which offers additional hydrodynamic forces for side flushing cleaning and achieves effective removal within a mere 0.5 seconds. Our device is tested with imbalanced cell mixtures of sperm and epithelial cells with large disparity ratios. By concurrently employing CFF and acoustic streaming, the samples with our sperm-enrichment can achieve 91.72-97.78% for the recovery rate and 74.58-89.26% for the purity in the sperm enrichment. They are further subjected to short tandem repeat (STR) profiling, enabling the identification of perpetrators. Notably, even samples with minimal sperm cells demonstrated a significant increase in the male donor DNA ratio, while the peak heights of female alleles became virtually undetectable. The exceptional cell separation capability demonstrated by our BAF device highlights its potential applications in forensic sciences and other areas of cell biology.


Subject(s)
Semen , Spermatozoa , Male , Humans , Female , Acoustics , Sound , Microsatellite Repeats
4.
Materials (Basel) ; 16(10)2023 May 18.
Article in English | MEDLINE | ID: mdl-37241441

ABSTRACT

Tissues and organs consist of cells organized in specified patterns that support their function, as exemplified by tissues such as skin, muscle, and cornea. It is, therefore, important to understand how external cues, such as engineered surfaces or chemical contaminants, can influence the organization and morphology of cells. In this work, we studied the impact of indium sulfate on human dermal fibroblast (GM5565) viability, production of reactive oxygen species (ROS), morphology, and alignment behavior on tantalum/silicon oxide parallel line/trench surface structures. The viability of cells was measured using the alamarBlue™ Cell Viability Reagent probe, while the ROS levels in cells were quantified using cell-permeant 2',7'-dichlorodihydrofluorescein diacetate. Cell morphology and orientation on the engineered surfaces were characterized using fluorescence confocal and scanning electron microscopy. When cells were cultured in media containing indium (III) sulfate, the average cell viability decreased by as much as ~32% and the concentration of cellular ROS increased. Cell geometry became more circular and compact in the presence of indium sulfate. Even though actin microfilaments continue to preferentially adhere to tantalum-coated trenches in the presence of indium sulfate, the cells are less able to orient along the line axes of the chips. Interestingly, the indium sulfate-induced changes in cell alignment behavior are pattern dependent-a larger proportion of adherent cells on structures with line/trench widths in the range of 1 µm and 10 µm lose the ability to orient themselves, compared to those grown on structures with line widths smaller than 0.5 µm. Our results show that indium sulfate impacts the response of human fibroblasts to the surface structure to which they adhere and underscores the importance of evaluating cell behaviors on textured surfaces, especially in the presence of potential chemical contaminants.

5.
Antioxidants (Basel) ; 12(1)2023 Jan 04.
Article in English | MEDLINE | ID: mdl-36670987

ABSTRACT

Deregulation of redox homeostasis is often associated with an accelerated aging process. Ribose-5-phosphate isomerase A (RPIA) mediates redox homeostasis in the pentose phosphate pathway (PPP). Our previous study demonstrated that Rpi knockdown boosts the healthspan in Drosophila. However, whether the knockdown of rpia-1, the Rpi ortholog in Caenorhabditis elegans, can improve the healthspan in C. elegans remains unknown. Here, we report that spatially and temporally limited knockdown of rpia-1 prolongs lifespan and improves the healthspan in C. elegans, reflecting the evolutionarily conserved phenotypes observed in Drosophila. Ubiquitous and pan-neuronal knockdown of rpia-1 both enhance tolerance to oxidative stress, reduce polyglutamine aggregation, and improve the deteriorated body bending rate caused by polyglutamine aggregation. Additionally, rpia-1 knockdown temporally in the post-developmental stage and spatially in the neuron display enhanced lifespan. Specifically, rpia-1 knockdown in glutamatergic or cholinergic neurons is sufficient to increase lifespan. Importantly, the lifespan extension by rpia-1 knockdown requires the activation of autophagy and AMPK pathways and reduced TOR signaling. Moreover, the RNA-seq data support our experimental findings and reveal potential novel downstream targets. Together, our data disclose the specific spatial and temporal conditions and the molecular mechanisms for rpia-1 knockdown-mediated longevity in C. elegans. These findings may help the understanding and improvement of longevity in humans.

6.
Autophagy ; 19(1): 224-240, 2023 01.
Article in English | MEDLINE | ID: mdl-35503435

ABSTRACT

Dietary restriction (DR) is known to promote autophagy to exert its longevity effect. While SAMS-1 (S-adenosyl methionine synthetase-1) has been shown to be a key mediator of the DR response, little is known about the roles of S-adenosyl methionine (SAM) and SAM-dependent methyltransferase in autophagy and DR-induced longevity. In this study, we show that DR and SAMS-1 repress the activity of SET-2, a histone H3K4 methyltransferase, by limiting the availability of SAM. Consequently, the reduced H3K4me3 levels promote the expression and activity of two transcription factors, HLH-30/TFEB and PHA-4/FOXA, which both regulate the transcription of autophagy-related genes. We then find that HLH-30/TFEB and PHA-4/FOXA act collaboratively on their common target genes to mediate the transcriptional response of autophagy-related genes and consequently the lifespan of the animals. Our study thus shows that the SAMS-1-SET-2 axis serves as a nutrient-sensing module to epigenetically coordinate the activation of HLH-30/TFEB and PHA-4/FOXA transcription factors to control macroautophagy/autophagy and longevity in response to DR.Abbreviations: ChIP: chromatin immunoprecipitation; ChIP-seq: chromatin immuno precipitation-sequencing; COMPASS: complex of proteins associated with Set1; DR: dietary restriction; GO: gene ontology; SAM: S-adenosyl methionine; SAMS-1: S-adenosyl methionine synthetase-1; TSS: transcription start site; WT: wild-type.


Subject(s)
Caenorhabditis elegans Proteins , Longevity , Animals , Longevity/physiology , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/metabolism , Histones/metabolism , Methylation , 5-Methyltetrahydrofolate-Homocysteine S-Methyltransferase/metabolism , Autophagy/genetics , Transcription Factors/metabolism , Methionine , Basic Helix-Loop-Helix Transcription Factors/metabolism
7.
Materials (Basel) ; 15(10)2022 May 17.
Article in English | MEDLINE | ID: mdl-35629602

ABSTRACT

Cell adhesion is an essential biological function for division, migration, signaling and tissue development. While it has been demonstrated that this cell function can be modified by using nanometer-scale surface topographic structures, it remains unknown how contaminants such as indium (III) ion might influence this specific cell behavior. Herein, the influence of indium chloride on human dermal fibroblast (GM5565) adhesion characteristics was investigated, given the frequent contact of contaminants with skin. The morphology of the adherent cells and their mitochondrial reticulum was characterized on cell culture dishes and nanopatterned surfaces by using fluorescence confocal microscopy and scanning electron microscopy. Results showed a significant proportion of cells lost their ability to align preferentially along the line axes of the nanopattern upon exposure to 3.2 mM indium chloride, with cells aligned within 10° of the pattern line axes reduced by as much as ~70%. Concurrent with the cell adhesion behaviors, the mitochondria in cells exposed to indium chloride exhibit a punctate staining that contrasts with the normal network of elongated tubular geometry seen in control cells. Our results demonstrate that exposure to indium chloride has detrimental effects on the behavior of human fibroblasts and adversely impacts their mitochondrial morphology. This shows the importance of evaluating the biological impacts of indium compounds.

8.
Healthcare (Basel) ; 10(4)2022 Apr 03.
Article in English | MEDLINE | ID: mdl-35455855

ABSTRACT

Cultural competence refers to a healthcare provider's ability to consider cultural factors that affect an individual's health and attitudes toward disease and disability. Nurse practitioners (NPs) are increasingly important in healthcare, practicing culturally competent care strategies to improve the quality of patient care. The aim of this study was to explore cultural competence and its related factors among NPs. A cross sectional study design with a structured questionnaire survey was used. Purposive sampling was employed, for which 86 NPs were recruited from a medical center in northern Taiwan. A T-test, one-way ANOVA, and Pearson's product-moment correlation coefficient were used for data analysis. The results were as follows: (1) overall, the total score for cultural competence was above-average, with a score of 3.75; (2) years of experience as a NP was found to have a statistically significant correlation with overall clinical competence, with r = 0.23, p < 0.05; (3) there were significant differences in clinical awareness and cultural sensitivity related to the clinical ladder system (t = −2.42, p = 0.01; t = −2.04, p = 0.04). The findings of this study can provide information for directors of medical institutions to design an in-service educational program for NPs to enhance their cultural competence and nursing quality.

9.
Int J Mol Sci ; 24(1)2022 Dec 29.
Article in English | MEDLINE | ID: mdl-36614054

ABSTRACT

Altered metabolism is a hallmark of aging. The tricarboxylic acid cycle (TCA cycle) is an essential metabolic pathway and plays an important role in lifespan regulation. Supplementation of α-ketoglutarate, a metabolite converted by isocitrate dehydrogenase alpha-1 (idha-1) in the TCA cycle, increases lifespan in C. elegans. However, whether idha-1 can regulate lifespan in C. elegans remains unknown. Here, we reported that the expression of idha-1 modulates lifespan and oxidative stress tolerance in C. elegans. Transgenic overexpression of idha-1 extends lifespan, increases the levels of NADPH/NADP+ ratio, and elevates the tolerance to oxidative stress. Conversely, RNAi knockdown of idha-1 exhibits the opposite effects. In addition, the longevity of eat-2 (ad1116) mutant via dietary restriction (DR) was reduced by idha-1 knockdown, indicating that idha-1 may play a role in DR-mediated longevity. Furthermore, idha-1 mediated lifespan may depend on the target of rapamycin (TOR) signaling. Moreover, the phosphorylation levels of S6 kinase (p-S6K) inversely correlate with idha-1 expression, supporting that the idha-1-mediated lifespan regulation may involve the TOR signaling pathway. Together, our data provide new insights into the understanding of idha-1 new function in lifespan regulation probably via DR and TOR signaling and in oxidative stress tolerance in C. elegans.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Isocitrate Dehydrogenase , Longevity , Oxidative Stress , Animals , Caenorhabditis elegans/enzymology , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Isocitrate Dehydrogenase/genetics , Isocitrate Dehydrogenase/metabolism , Longevity/genetics
10.
Nutrients ; 13(12)2021 Nov 29.
Article in English | MEDLINE | ID: mdl-34959868

ABSTRACT

Declines in physiological functions are the predominant risk factors for age-related diseases, such as cancers and neurodegenerative diseases. Therefore, delaying the aging process is believed to be beneficial in preventing the onset of age-related diseases. Previous studies have demonstrated that Graptopetalum paraguayense (GP) extract inhibits liver cancer cell growth and reduces the pathological phenotypes of Alzheimer's disease (AD) in patient IPS-derived neurons. Here, we show that GP extract suppresses ß-amyloid pathology in SH-SYS5Y-APP695 cells and APP/PS1 mice. Moreover, AMP-activated protein kinase (AMPK) activity is enhanced by GP extract in U87 cells and APP/PS1 mice. Intriguingly, GP extract enhances autophagy in SH-SYS5Y-APP695 cells, U87 cells, and the nematode Caenorhabditis elegans, suggesting a conserved molecular mechanism by which GP extract might regulate autophagy. In agreement with its role as an autophagy activator, GP extract markedly diminishes mobility decline in polyglutamine Q35 mutants and aged wild-type N2 animals in C. elegans. Furthermore, GP extract significantly extends lifespan in C. elegans.


Subject(s)
Aging/drug effects , Crassulaceae/chemistry , Plant Extracts/pharmacology , AMP-Activated Protein Kinases/drug effects , Amyloid beta-Peptides/drug effects , Animals , Autophagy/drug effects , Caenorhabditis elegans/drug effects , Cell Culture Techniques , Disease Models, Animal , Humans , Longevity/drug effects , Mice , Mice, Transgenic
11.
Bio Protoc ; 11(16): e4124, 2021 Aug 20.
Article in English | MEDLINE | ID: mdl-34541042

ABSTRACT

The nematode Caenorhabditis elegans has emerged as a popular model system for studying the regulation of lipid metabolism. Therefore, it is critical to develop a method for determining fat storage in individual worms. Oil Red O (ORO) staining has been validated as an accurate assessment for major fat storage in C. elegans. Here, we describe an optimized protocol for ORO staining of C. elegans and provide detailed instructions for quantifying the intensity of ORO signal in images acquired by light microscopy.

12.
Brief Bioinform ; 22(6)2021 11 05.
Article in English | MEDLINE | ID: mdl-34368845

ABSTRACT

In this study, we proposed a deep learning (DL) model for classifying individuals from mixtures of DNA samples using 27 short tandem repeats and 94 single nucleotide polymorphisms obtained through massively parallel sequencing protocol. The model was trained/tested/validated with sequenced data from 6 individuals and then evaluated using mixtures from forensic DNA samples. The model successfully identified both the major and the minor contributors with 100% accuracy for 90 DNA mixtures, that were manually prepared by mixing sequence reads of 3 individuals at different ratios. Furthermore, the model identified 100% of the major contributors and 50-80% of the minor contributors in 20 two-sample external-mixed-samples at ratios of 1:39 and 1:9, respectively. To further demonstrate the versatility and applicability of the pipeline, we tested it on whole exome sequence data to classify subtypes of 20 breast cancer patients and achieved an area under curve of 0.85. Overall, we present, for the first time, a complete pipeline, including sequencing data processing steps and DL steps, that is applicable across different NGS platforms. We also introduced a sliding window approach, to overcome the sequence length variation problem of sequencing data, and demonstrate that it improves the model performance dramatically.


Subject(s)
DNA/genetics , Deep Learning , Sequence Analysis, DNA/methods , High-Throughput Nucleotide Sequencing/methods , Humans , Polymorphism, Single Nucleotide
13.
PLoS One ; 15(11): e0241455, 2020.
Article in English | MEDLINE | ID: mdl-33175851

ABSTRACT

S-adenosyl methionine synthetase (SAMS) catalyzes the biosynthesis of S-adenosyl methionine (SAM), which serves as a universal methyl group donor for numerous biochemical reactions. Previous studies have clearly demonstrated that SAMS-1, a C. elegans homolog of mammalian SAMS, is critical for dietary restriction (DR)-induced longevity in Caenorhabditis elegans. In addition to SAMS-1, three other SAMS paralogs have been identified in C. elegans. However, their roles in longevity regulation have never been explored. Here, we show that depletion of sams-5, but not sams-3 or sams-4, can extend lifespan in worms. However, the phenotypes and expression pattern of sams-5 are distinct from sams-1, suggesting that these two SAMSs might regulate DR-induced longevity via different mechanisms. Through the genetic epistasis analysis, we have identified that sams-5 is required for DR-induced longevity in a pha-4/FOXA dependent manner.


Subject(s)
Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/enzymology , Caenorhabditis elegans/physiology , Caloric Restriction , Longevity/physiology , Methionine Adenosyltransferase/metabolism , Animals , Caenorhabditis elegans Proteins/genetics , Gene Expression Regulation , Larva/genetics , Mutation/genetics , Phenotype , Transcription Factors/metabolism
14.
Sci Adv ; 6(40)2020 10.
Article in English | MEDLINE | ID: mdl-33008901

ABSTRACT

Aging is the dominant risk factor for most chronic diseases. Development of antiaging interventions offers the promise of preventing many such illnesses simultaneously. Cellular stress resistance is an evolutionarily conserved feature of longevity. Here, we identify compounds that induced resistance to the superoxide generator paraquat (PQ), the heavy metal cadmium (Cd), and the DNA alkylator methyl methanesulfonate (MMS). Some rescue compounds conferred resistance to a single stressor, while others provoked multiplex resistance. Induction of stress resistance in fibroblasts was predictive of longevity extension in a published large-scale longevity screen in Caenorhabditis elegans, although not in testing performed in worms and flies with a more restricted set of compounds. Transcriptomic analysis and genetic studies implicated Nrf2/SKN-1 signaling in stress resistance provided by two protective compounds, cardamonin and AEG 3482. Small molecules identified in this work may represent attractive tools to elucidate mechanisms of stress resistance in mammalian cells.


Subject(s)
Caenorhabditis elegans Proteins , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , DNA-Binding Proteins/metabolism , Longevity/genetics , Mammals/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism
15.
Sci Adv ; 6(43)2020 10.
Article in English | MEDLINE | ID: mdl-33087356

ABSTRACT

Heat shock factor-1 (HSF-1) is a master regulator of stress responses across taxa. Overexpression of HSF-1 or genetic ablation of its conserved negative regulator, heat shock factor binding protein 1 (HSB-1), results in robust life-span extension in Caenorhabditis elegans Here, we found that increased HSF-1 activity elevates histone H4 levels in somatic tissues during development, while knockdown of H4 completely suppresses HSF-1-mediated longevity. Moreover, overexpression of H4 is sufficient to extend life span. Ablation of HSB-1 induces an H4-dependent increase in micrococcal nuclease protection of both nuclear chromatin and mitochondrial DNA (mtDNA), which consequently results in reduced transcription of mtDNA-encoded complex IV genes, decreased respiratory capacity, and a mitochondrial unfolded protein response-dependent life-span extension. Collectively, our findings reveal a previously unknown role of HSB-1/HSF-1 signaling in modulation of mitochondrial function via mediating histone H4-dependent regulation of mtDNA gene expression and concomitantly acting as a determinant of organismal longevity.

16.
Exp Biol Med (Maywood) ; 245(17): 1552-1559, 2020 11.
Article in English | MEDLINE | ID: mdl-32854519

ABSTRACT

IMPACT STATEMENT: The functional decline of motor activity is a common feature in almost all aging animals that leads to frailty, loss of independence, injury, and even death in the elderly population. Thus, understanding the molecular mechanism that drives the initial stage of this functional decline and developing strategies to increase human healthspan and even lifespan by targeting this process would be of great interests to the field. In this study, we found that by precisely targeting the motor neurons to potentiate its synaptic releases either genetically or pharmacologically, we can not only delay the functional aging at NMJs but also slow the rate of aging at the organismal level. Most importantly, we have demonstrated that a critical window of time, that is the early stage of NMJs functional decline, is required for the beneficial effects. A short-term treatment within this time period is sufficient to extend the animals' lifespan.


Subject(s)
Caenorhabditis elegans/physiology , Exocytosis , Longevity/physiology , Motor Neurons/physiology , Synapses/physiology , Animals , Arecoline/pharmacology , Caenorhabditis elegans/drug effects , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/genetics , Exocytosis/drug effects , Longevity/drug effects , Motor Neurons/drug effects , Receptors, Muscarinic/metabolism , Signal Transduction/drug effects , Synapses/drug effects , Synaptic Transmission/drug effects , Synaptic Transmission/genetics
17.
Aging Cell ; 19(6): e13157, 2020 06.
Article in English | MEDLINE | ID: mdl-32432401

ABSTRACT

Stress granules (SGs) are nonmembranous organelles that are dynamically assembled and disassembled in response to various stressors. Under stressed conditions, polyadenylated mRNAs and translation factors are sequestrated in SGs to promote global repression of protein synthesis. It has been previously demonstrated that SG formation enhances cell survival and stress resistance. However, the physiological role of SGs in organismal aging and longevity regulation remains unclear. In this study, we used TIAR-1::GFP and GTBP-1::GFP as markers to monitor the formation of SGs in Caenorhabditis elegans. We found that, in addition to acute heat stress, SG formation could also be triggered by dietary changes, such as starvation and dietary restriction (DR). We found that HSF-1 is required for the SG formation in response to acute heat shock and starvation but not DR, whereas the AMPK-eEF2K signaling is required for starvation and DR-induced SG formation but not heat shock. Moreover, our data suggest that this AMPK-eEF2K pathway-mediated SG formation is required for lifespan extension by DR, but dispensable for the longevity by reduced insulin/IGF-1 signaling. Collectively, our findings unveil a novel role of SG formation in DR-induced longevity.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Longevity/physiology , Stress, Physiological/physiology , Animals , Caenorhabditis elegans , Diet Therapy/methods , Signal Transduction
18.
Materials (Basel) ; 13(2)2020 Jan 11.
Article in English | MEDLINE | ID: mdl-31940759

ABSTRACT

Engineered nanomaterials are often used in tissue engineering applications to influence and manipulate the behavior of cells. Recently, a number of tungsten-silicon oxide nanocomposite devices containing equal width (symmetric) tungsten and silicon oxide parallel line comb structures were developed and used by our group. The devices induced over 90% of seeded cells (Vero) to align within ±20° of the axes of 10 µm wide tungsten lines. Furthermore, a mathematical model was successfully developed to predict this alignment behavior and forecast the minimum width of isolated tungsten lines required to induce such behavior. However, the mechanism by which the widths of the symmetrical tungsten and silicon oxide lines induce the alignment behavior is still unknown. Furthermore, the model was never tested on more complex asymmetrical structures. Herewith, experiments were conducted with mammalian cells on complex asymmetrical structures with unequal tungsten and silicon oxide line widths. Results showed that the model could be extended to more complex pattern structures. In addition, cell morphology on the patterned structures reset during cell division because of mitotic rounding, which reduced the population of cells that elongated and aligned on the tungsten lines. Ultimately, we concluded that it was impossible to achieve a 100% alignment with cells having unsynchronized cell cycles because cell rounding during mitosis took precedence over cell alignment; in other words, internal chemical cues had a stronger role in cell morphology than external cues.

19.
ACS Med Chem Lett ; 10(9): 1253-1259, 2019 Sep 12.
Article in English | MEDLINE | ID: mdl-31531193

ABSTRACT

Peptide-based subunit vaccines require an immunostimulant (adjuvant) and/or delivery system to protect the antigenic peptide from degradation and induce the desired immunity. Currently available adjuvants are either too toxic for human use (experimental adjuvants) or they are limited for use in particular vaccines or licensed countries (commercial adjuvants). Therefore, there is an immediate need for novel adjuvants that are both safe and effective. Herein, we assessed the ability of cholic acid (a major bile acid) as a nontoxic, biodegradable, human-derived, potent vaccine delivery system. An antigenic peptide derived from Group A Streptococcus was conjugated to hydrophobic cholic acid via solid phase peptide synthesis to produce lipopeptide that self-assembled into rod-like nanoparticles under aqueous conditions. Following intranasal immunization in mice, this lipopeptide was capable of inducing the production of opsonic epitope-specific antibodies on its own and in liposomal formulation. The cholic acid-based conjugate induced significantly stronger humoral immune responses than cholera toxin-based adjuvant. Thus, we demonstrated, for the first time, capability of the human-derived lipid to act as a built-in immunoadjuvant for vaccines.

20.
Micromachines (Basel) ; 10(4)2019 Apr 22.
Article in English | MEDLINE | ID: mdl-31013572

ABSTRACT

Nanoindentation techniques have been used to reliably characterize mechanical properties at small scales for the past 30 years [...].

SELECTION OF CITATIONS
SEARCH DETAIL
...